Integrated, molecular engineering approaches to develop prostate cancer gene therapy.

Curr Gene Ther

Department of Urology, Jonsson Comprehensive Cancer Center and Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

Published: October 2003

Gene therapy is a translational science, with the ultimate goal of cancer gene therapy research being to develop effective and safe treatments for patients. In the new millennium, it is imperative to tailor a therapeutic strategy for a particular disease, based on clinical management issues. The desirable regulatory features and therapeutic strategies need to be fully considered before proceeding with molecular engineering of the gene delivery vector. Issues, such as cell-targeted expression, in vivo monitoring of gene delivery and expression, therapeutic strategies, and vector selection that targets the particular disease stage should be addressed. During the validation phase of the study, an objective evaluation in relevant animal models should determine whether the vector meets the desired specifications. Meeting the predetermined criteria should propel the product towards the clinical phase of evaluation. This review will present the conceptual framework that has been applied to developing an integrated and targeted gene therapy for prostate cancer.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1566523034578230DOI Listing

Publication Analysis

Top Keywords

gene therapy
16
molecular engineering
8
prostate cancer
8
cancer gene
8
therapeutic strategies
8
gene delivery
8
gene
6
integrated molecular
4
engineering approaches
4
approaches develop
4

Similar Publications

Background And Objectives: Mitochondrial disorders are multiorgan disorders resulting in significant morbidity and mortality. We aimed to characterize death-associated factors in an international cohort of deceased individuals with mitochondrial disorders.

Methods: This cross-sectional multicenter observational study used data provided by 26 mitochondrial disease centers from 8 countries from January 2022 to March 2023.

View Article and Find Full Text PDF

Establishment and application of a zebrafish model of Werner syndrome identifies sapanisertib as a potential antiaging drug.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200438, China.

Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named (), harboring a mutation in the - () gene. Loss of leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration.

View Article and Find Full Text PDF

Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.

View Article and Find Full Text PDF

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!