The role of the oxyanion hole in the reaction catalyzed by pig medium-chain acyl-CoA dehydrogenase (pMCAD) has been investigated using enzyme reconstituted with 2'-deoxy-FAD. The k(cat) (18.8 +/- 0.5 s(-1)) and K(m) (2.5 +/- 0.4 microM) values for the oxidation of n-octanoyl-CoA (C(8)-CoA) by WT pMCAD recombinantly expressed in Escherichia coli are similar to those of native pMCAD isolated from pig kidney. In agreement with previous studies [Engst et al. (1999) Biochemistry 38, 257-267], reconstitution of the WT enzyme with 2'-deoxy-FAD causes a large (400-fold) decrease in k(cat) but has little effect on K(m). To investigate the molecular basis for the alterations in activity resulting from changes in hydrogen bonding between the substrate and the enzyme's oxyanion hole, the structure of the product analogue hexadienoyl-CoA (HD-CoA) bound to the 2'-deoxy-FAD-reconstituted enzyme has been probed by Raman spectroscopy. Importantly, while WT pMCAD causes a 27 cm(-1) decrease in the vibrational frequency of the HD enone band, from 1595 to 1568 cm(-1), the enone band is only shifted 10 cm(-1) upon binding HD-CoA to 2'-deoxy-FAD pMCAD. Thus, removal of the 2'-ribityl hydroxyl group results in a substantial reduction in the ability of the enzyme to polarize the ground state of the ES complex. On the basis of an analysis of a similar system, it is estimated that ground state destabilization is reduced by up to 17 kJ mol(-1), while the activation energy for the reaction is raised 15 kJ mol(-1). In addition, removal of the 2'-ribityl hydroxyl reduces the redox potential shift that is induced by HD-CoA binding from 18 to 11 kJ mol(-1). Consequently, while ligand polarization caused by hydrogen bonding in the oxyanion hole is intimately linked to substrate turnover, additional factors must be responsible for ligand-induced changes in redox potential. Finally, while replacement of the catalytic base E376 with Gln abolishes the ability of the enzyme to catalyze substrate oxidation and to catalyze the exchange of the C(8)-CoA alpha-protons with solvent deuterium, the 2'-deoxy-FAD-reconstituted enzyme catalyzes alpha-proton exchange at a rate (k(exc)) of 0.085 s(-1), which is only 4-fold slower than k(exc) for WT pMCAD (0.35 s(-1)). Thus, either the oxyanion hole plays only a minor role in stabilizing the transition state for alpha-proton exchange, in contrast to its role in substrate oxidation, or the value of k(exc) for WT pMCAD reflects a process such as exchange of the E376 COOH proton with solvent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0344578DOI Listing

Publication Analysis

Top Keywords

oxyanion hole
16
medium-chain acyl-coa
8
acyl-coa dehydrogenase
8
raman spectroscopy
8
hydrogen bonding
8
2'-deoxy-fad-reconstituted enzyme
8
enone band
8
removal 2'-ribityl
8
2'-ribityl hydroxyl
8
ability enzyme
8

Similar Publications

Structural insight into the poly(3-hydroxybutyrate) hydrolysis by intracellular PHB depolymerase from Bacillus thuringiensis.

Int J Biol Macromol

January 2025

Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 10617, Taiwan. Electronic address:

Article Synopsis
  • PHB (Poly((R)-3-hydroxybutyrate)) is a biodegradable biopolymer used in plastics, and its breakdown is facilitated by an enzyme called PhaZ.
  • Researchers discovered a new version of this enzyme from Bacillus thuringiensis (BtPhaZ) and determined its crystal structure, which is previously uncharacterized for an intracellular PhaZ.
  • BtPhaZ shows structural similarities to other hydrolase enzymes and has specific features that help it bind to and break down PHB, mainly producing monomers rather than longer chains.
View Article and Find Full Text PDF

The nucleophile elbow is a well-known structural motif, which exists in proteins with catalytic triads and contains a catalytic nucleophile and the first node of an oxyanion hole. Here, we show that structural similarities of proteins with the nucleophile elbow extend beyond simple nucleophile elbow motifs. The motifs are incorporated into larger conserved structural organizations, the ElbowFlankOxy networks, incorporating motifs and flanking residues and networks of conserved interactions.

View Article and Find Full Text PDF

Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease.

Bioorg Chem

December 2024

Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4130000, Chile. Electronic address:

This study presents the synthesis and characterization of a series of 13 novel acetamides. These were subjected to Ellman's assay to determine the efficacy of the AChE and BChE inhibitors. Finally, we report their antioxidant activity as an alternative approach for the search for drugs to treat AD.

View Article and Find Full Text PDF

Unravelling biochemical and molecular mechanism of a carboxylesterase from Dietzia kunjamensis IITR165 reveal novel activities against polyethylene terephthalate.

Biochem Biophys Res Commun

November 2024

Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division. CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India. Electronic address:

Plastics and plasticizers accumulate in the ecological niches affecting biodiversity, and human and environmental health. Bacteria degrading polyethylene terephthalate (PET) were screened and PETases involved in PET degradation were characterized. Here, we identified a carboxylesterase Dkca1 of 48.

View Article and Find Full Text PDF

Microbial lipases (MLs) are pivotal biocatalysts in lipid biotechnology due to their diverse enzymatic properties and substrate specificity, garnering significant research attention. This comprehensive review explores the significance of MLs in biocatalysis, providing insights into their structure, catalytic domain, and oxyanion hole. The catalytic mechanism is elucidated, highlighting the molecular processes driving their efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!