Bifunctional DNA intercalating agents have long attracted considerable attention as anticancer agents. One of the lead compounds in this category is the dimeric antitumor drug elinafide, composed of two tricyclic naphthalimide chromophores separated by an aminoalkyl linker chain optimally designed to permit bisintercalation of the drug into DNA. In an effort to optimize the DNA recognition capacity, different series of elinafide analogues have been prepared by extending the surface of the planar drug chromophore which is important for DNA sequence recognition. We report here a detailed investigation of the DNA sequence preference of three tetracyclic monomeric or dimeric pyrazinonaphthalimide derivatives. Melting temperature measurements and surface plasmon resonance (SPR) studies indicate that the dimerization of the tetracyclic planar chromophore considerably augments the affinity of the drug for DNA, polynucleotides, or hairpin oligonucleotides and promotes selective interaction with G.C sites. The (CH(2))(2)NH(CH(2))(3)NH(CH(2))(2) connector stabilizes the drug-DNA complexes. The methylation of the two nitrogen atoms of this linker chain reduces the binding affinity and increases the dissociation rates of the drug-DNA complexes by a factor of 10. DNase I footprinting experiments were used to investigate the sequence selectivity of the drugs, demonstrating highly preferential binding to G.C-rich sequences. It also served to select a high-affinity site encompassing the sequence 5'-GACGGCCAG which was then introduced into a biotin-labeled hairpin oligonucleotide to accurately measure the binding parameters by SPR. The affinity constant of the unmethylated dimer for this sequence is 500 times higher than that of the monomer compound and approximately 10 times higher than that of the methylated dimer. The DNA groove accessibility was also probed with three related oligonucleotides carrying G --> c(7)G, G --> I, and C --> M substitutions. The level of drug binding to the two hairpin oligonucleotides containing 7-deazaguanine (c(7)G) or 5-methylcytosine (M) residues is unchanged or only slightly reduced compared to that of the unmodified target. In contrast, incorporation of inosine (I) residues considerably decreases the extent of drug binding or even abolishes the interaction as is the case with the monomer. The pyrazinonaphthalimide derivatives are thus much more sensitive to the deletion of the exocyclic guanine 2-amino group exposed in the minor groove of the duplex than to the modification of the major groove elements. The complementary SPR footprinting methodology combining site selection and quantitative DNA affinity analysis constitutes a reliable method for dissecting the DNA sequence selectivity profile of reversible DNA binding small molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi034637hDOI Listing

Publication Analysis

Top Keywords

dna sequence
16
dna
11
sequence recognition
8
linker chain
8
drug dna
8
pyrazinonaphthalimide derivatives
8
hairpin oligonucleotides
8
drug-dna complexes
8
sequence selectivity
8
times higher
8

Similar Publications

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

A mobile genetic element-derived primase-polymerase harbors multiple activities implicated in DNA replication and repair.

Nucleic Acids Res

January 2025

State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.

Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.

View Article and Find Full Text PDF

The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!