Structural basis for selective recognition of pneumococcal cell wall by modular endolysin from phage Cp-1.

Structure

Grupo de Cristalografía Macromolecular y Biología Estructural, de Macromoléculas Biológicas, Instituto Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.

Published: October 2003

Pneumococcal bacteriophage-encoded lysins are modular choline binding proteins that have been shown to act as enzymatic antimicrobial agents (enzybiotics) against streptococcal infections. Here we present the crystal structures of the free and choline bound states of the Cpl-1 lysin, encoded by the pneumococcal phage Cp-1. While the catalytic module displays an irregular (beta/alpha)(5)beta(3) barrel, the cell wall-anchoring module is formed by six similar choline binding repeats (ChBrs), arranged into two different structural regions: a left-handed superhelical domain configuring two choline binding sites, and a beta sheet domain that contributes in bringing together the whole structure. Crystallographic and site-directed mutagenesis studies allow us to propose a general catalytic mechanism for the whole glycoside hydrolase family 25. Our work provides the first complete structure of a member of the large family of choline binding proteins and reveals that ChBrs are versatile elements able to tune the evolution and specificity of the pneumococcal surface proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2003.09.005DOI Listing

Publication Analysis

Top Keywords

choline binding
16
phage cp-1
8
binding proteins
8
choline
5
structural basis
4
basis selective
4
selective recognition
4
pneumococcal
4
recognition pneumococcal
4
pneumococcal cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!