Objectives: The objective of these studies was to evaluate human insulin gene expression following intraliver plasmid injection in diabetic mice as a potential approach to gene therapy for insulin-dependent diabetes mellitus.

Methods: The fragment containing human proinsulin gene lacking its own promoter, was cloned into plasmids containing promoter and enhancer of cytomegalovirus or human hepatitis B virus. The resulting gene constructs were first tested in vitro using 3T3 fibroblast cell line and subsequently in vivo applying streptozotocin-induced diabetic mice.

Results: We found significant reduction in glucose levels in both experimental systems, giving evidence that prolonged constitutive systemic secretion of bioactive human (pro)insulin has been attained in non-neuroendocrine cell line in vitro and in mice following intra-liver plasmid injection.

Conclusion: Our data demonstrate the reduction of glucose levels in vitro in 3T3 fibroblast cells and in vivo in diabetic mice after treatment with plasmids expressing proinsulin, giving evidence that those constructs may have certain usage also in human gene therapy of diabetes mellitus type 1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1262-3636(07)70054-xDOI Listing

Publication Analysis

Top Keywords

glucose levels
12
diabetic mice
12
human insulin
8
insulin gene
8
vivo diabetic
8
gene therapy
8
human proinsulin
8
vitro 3t3
8
3t3 fibroblast
8
reduction glucose
8

Similar Publications

The leaves of (Batal) Iljinsk., a plant native to China that has long been used in traditional Chinese medicine to treat diabetes. It remains to be determined what chemical constituents are responsible for this effect.

View Article and Find Full Text PDF

Purpose: Our aim was to examine the expression of PAX6 and keratocyte-specific markers in human limbal stromal cells (LSCs) in congenital aniridia (AN) and in healthy corneas, .

Methods: Primary human LSCs were extracted from individuals with aniridia (AN-LSCs) ( = 8) and from healthy corneas (LSCs) ( = 8). The cells were cultured in either normal-glucose serum-containing cell culture medium (NGSC-medium) or low-glucose serum-free cell culture medium (LGSF-medium).

View Article and Find Full Text PDF

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.

Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.

View Article and Find Full Text PDF

Improving Renal Protection in Chronic Kidney Disease Associated with Type 2 Diabetes: The Role of Finerenone.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Internal Medicine, Division of Nephrology and Hypertension, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia.

Chronic kidney disease (CKD) is a major complication of type 2 diabetes mellitus (T2D), which often leads to diabetic kidney disease (DKD). Traditional therapies, including renin- angiotensin-aldosterone system inhibitors and sodium-glucose cotransporter-2 inhibitors, are effective in slowing CKD progression. However, these approaches are insufficient to comprehensively inhibit mineralocorticoid receptor (MR) overactivation in the kidneys, which remains a significant driver of inflammation, fibrosis, and oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!