A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Internal stress distribution in cervical intervertebral discs: the influence of an artificial cervical joint and simulated anterior interbody fusion. | LitMetric

There is concern that cervical interbody fusion can result in accelerated degenerative changes occurring at adjacent spinal levels. The cervical spine clearly evolved to be mobile. It would seem to be desirable for spinal surgeons to have an alternative to fusion, and spinal arthroplasty is an appealing concept. The Bristol Disc is a mechanical device comprising two articulating components that result in motion with 6 df. It has been shown to have favorable kinematics when compared with intact and fused cadaveric spines. The current study attempts to record changes in the distribution of stresses within cervical intervertebral discs adjacent to the artificial disc or a simulated fusion. The technique used to measure intradiscal stress distributions is based on earlier work by McNally and Adams on lumbar intervertebral discs. The study generated stress profiles through cervical intervertebral discs statically loaded in four different postures in addition to recording changes in intradiscal pressure within both the nucleus and the annulus during flexion. Similar stress profiles were recorded from intact specimens and those with the artificial joint inserted. The artificial joint resulted in reduced stresses in the annulus compared with spines with a simulated fusion. The study demonstrates how different testing conditions can result in researchers being confronted with paradoxical data, and the simulation of muscle forces is recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00024720-200310000-00002DOI Listing

Publication Analysis

Top Keywords

intervertebral discs
16
cervical intervertebral
12
interbody fusion
8
simulated fusion
8
stress profiles
8
artificial joint
8
cervical
6
fusion
5
internal stress
4
stress distribution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!