In intestinal metaplasia and 30% of gastric carcinomas, MUC2 intestinal mucin and the intestine-specific transcription factors Cdx-1 and Cdx-2 are aberrantly expressed. The involvement of Cdx-1 and Cdx-2 in the intestinal development and their role in transcription of several intestinal genes support the hypothesis that Cdx-1 and/or Cdx-2 play important roles in the aberrant intestinal differentiation program of intestinal metaplasia and gastric carcinoma. To clarify the mechanisms of transcriptional regulation of the MUC2 mucin gene in gastric cells, pGL3 deletion constructs covering 2.6 kb of the human MUC2 promoter were used in transient transfection assays, enabling us to identify a relevant region for MUC2 transcription in all gastric cell lines. To evaluate the role of Cdx-1 and Cdx-2 in MUC2 transcription we performed co-transfection experiments with expression vectors encoding Cdx-1 and Cdx-2. In two of the four gastric carcinoma cell lines and in all colon carcinoma cell lines we observed transactivation of the MUC2 promoter by Cdx-2. Using gel shift assays we identified two Cdx-2 binding sites at -177/-171 and -191/-187. Only simultaneous mutation of the two sites resulted in inhibition of Cdx-2-mediated transactivation of MUC2 promoter, implying that both Cdx-2 sites are active. Finally, stable expression of Cdx-2 in a gastric cell line initially not expressing Cdx-2, led to induction of MUC2 expression. In conclusion, this work demonstrates that Cdx-2 activates the expression of MUC2 mucin gene in gastric cells, inducing an intestinal transdifferentiation phenotype that parallels what is observed both in intestinal metaplasia and some gastric carcinomas.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M309019200DOI Listing

Publication Analysis

Top Keywords

cell lines
16
cdx-1 cdx-2
16
muc2 mucin
12
mucin gene
12
carcinoma cell
12
intestinal metaplasia
12
muc2 promoter
12
cdx-2
11
muc2
9
human muc2
8

Similar Publications

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!