Eliminating alloreactive cells from T-cell populations would enable the transfer of immune function to patients who receive stem cell transplants. However, high-efficiency depletion has proved difficult to achieve. We sought to develop ex vivo approaches for the maximal depletion of alloreactive CD4(+) T cells. Using a flow cytometric cell sorting approach after mixed lymphocyte reaction (MLR) culture, we have found that sorted CFSE(bright) (5-(and-6)-carboxyfluorescein diacetate succinmidyl ester) (nondivided) and activation antigen-negative cells are markedly depleted of alloreactivity. With HLA-mismatched peripheral blood mononuclear cell (PBMC) stimulators we have consistently attained (90%-95%) depletion of alloreactivity. Importantly, when purified matured monocyte-derived dendritic cells (DCs) are used as stimulators, a 100-fold (99%) reduction in alloreactivity was attained, resulting in abrogation of the secondary MLR. Significantly, the CFSE(bright) CD25(-) cells recovered from these cultures retained general immunoreactivity, including responses to Candida and cytomegalovirus (CMV) antigens. In addition, a CFSE-based approach was tested and found to be sufficient for graft-versus-host disease (GVHD) prevention in vivo, in a major histocompatibility complex (MHC) class II disparate murine model. This efficient approach to selectively deplete mature alloantigen-specific T cells may permit enhanced immune reconstitution without GVHD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2003-04-1098 | DOI Listing |
Clin Transplant Res
December 2024
Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, Hanyang University College of Medicine, Seoul, Korea.
Persistent alloantigens derived from allograft tissues can be recognized by the host's alloreactive immune system. This process enables cognate B cells to differentiate into plasma cells, which secrete donor-specific antibodies that are key drivers of antibody-mediated allograft rejection. A subset of these plasma cells can survive for extended periods in a suitable survival niche and mature into long-lived plasma cells (LLPCs), which are a cellular component of humoral memory.
View Article and Find Full Text PDFMethods Cell Biol
October 2024
IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy. Electronic address:
Nat Biomed Eng
December 2024
Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Bispecific antibodies (biAbs) used in cancer immunotherapies rely on functional autologous T cells, which are often damaged and depleted in patients with haematological malignancies and in other immunocompromised patients. The adoptive transfer of allogeneic T cells from healthy donors can enhance the efficacy of biAbs, but donor T cells binding to host-cell antigens cause an unwanted alloreactive response. Here we show that allogeneic T cells engineered with a T-cell receptor that does not convert antigen binding into cluster of differentiation 3 (CD3) signalling decouples antigen-mediated T-cell activation from T-cell cytotoxicity while preserving the surface expression of the T-cell-receptor-CD3 signalling complex as well as biAb-mediated CD3 signalling and T-cell activation.
View Article and Find Full Text PDFJ Immunol
November 2024
Department of Surgery, Duke University School of Medicine, Durham, NC.
Alemtuzumab induction with belatacept/rapamycin-based maintenance immunotherapy (ABR) prevents kidney allograft rejection and specifically limits early costimulation blockade-resistant rejection (CoBRR). To evaluate the mechanisms by which this regimen alters CoBRR, we characterized the phenotype and functional response of preexisting memory cells to allogeneic endothelial cells using intracellular cytokine staining and flow cytometry. IL-7-induced lymphocyte proliferation in the presence or absence of rapamycin was assessed to characterize the phenotype of proliferating cells.
View Article and Find Full Text PDFTranspl Int
July 2024
University Grenoble Alpes, CNRS, Inserm, CHU Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France.
Despite the growing use of desensitization strategies, hyperimmune patients remain at high risk of antibody-mediated rejection suggesting that, even when donor-specific antibodies (DSA) are effectively depleted, anti-donor specific B cells persist. We included 10 highly sensitized recipients that underwent desensitization with plasmapheresis and B cell depletion prior to kidney transplantation. We quantified changes in DSA (luminex), total B-cell subsets (flow cytometry), anti-donor HLA B cells (fluorospot), and single-cell metabolism in serially collected samples before desensitization, at the time of transplant, and at 6 and 12 months thereafter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!