Excitation of ion-wave wakefield by the resonant absorption of a short pulsed microwave with plasma.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Energy and Environmental Science, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.

Published: September 2003

Unmagnetized, inhomogeneous laboratory plasma irradiated by a high power (eta=E(2)(0)/4pin(e)kT(e) approximately 5.0x10(-2)) short pulsed microwave with pulse length of the order of ion-plasma period (tau(pi) less, similar 2pi/omega(pi)) is studied. Large density perturbation traveling through the underdense plasma with a velocity much greater than the ion sound speed produced by the resonant absorption of the microwave pulse has been observed. In the beginning the density perturbation has large amplitude (deltan/n(0) approximately 40%) and propagates with a velocity of the order of 10(6) cm/s. But later its amplitude as well as the velocity decrease rapidly, and finally the velocity arrives with twice the ion sound speed. The oscillating incident electromagnetic waves enhance highly localized electric field by the resonant absorption process and develop time-averaged force field which pushes plasma electrons from the resonant layer. As the electrons are accelerated to be ejected, they pull plasma ions as a bunch with them by means of self-consistent Coulomb force. This suprathermal ion bunch can excite an ion-wave wakefield.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.68.036404DOI Listing

Publication Analysis

Top Keywords

resonant absorption
12
ion-wave wakefield
8
short pulsed
8
pulsed microwave
8
microwave pulse
8
density perturbation
8
ion sound
8
sound speed
8
plasma
5
excitation ion-wave
4

Similar Publications

Upconverted emission-driven photothermal conversion with gold nanospheres based on triplet-triplet annihilation.

Phys Chem Chem Phys

September 2020

Department of Materials and Applied Chemistry, College of Science Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.

Low-energy visible light was converted into heat energy through the excitation of the localized surface plasmon resonance of gold nanospheres excited by upconverted emission based on triplet-triplet annihilation of organic molecules. This system allows easy tuning of absorption/emission wavelengths, which is difficult with conventional photothermal conversion using rare-earth elements.

View Article and Find Full Text PDF

[Application of 3D-Flair MRI and vestibular function assessment in profound sudden sensorineural hearing loss patients].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

January 2025

Department of Otology Medicine, Shandong Provincial ENT Hospital, Shandong University, Jinan250022, China.

To analyse the 3D-Flair MRI manifestations of the inner ear, vestibular function status, and their correlation with hearing treatment outcomes in patients with severe sudden sensorineural hearing loss (SSNHL), and to explore potential prognostic indicators for sudden deafness. The clinical data of adult patients with unilateral profound sudden sensorineural hearing loss were retrospectively analyzed in Otorhinolaryngology Department of Shandong Provincial ENT Hospital from March 2018 to August 2020. Patients were categorized based on the results of their inner ear 3D-Flair MRI into two groups: the normal MRI group and the abnormal MRI group.

View Article and Find Full Text PDF

Proposed Optical Manipulation of Nanoparticles to Access and Select Emission Lines.

Nano Lett

January 2025

Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.

Optical manipulation of nanomaterials using light resonant with material excitations holds promise for enhancing optical forces and sorting particles by unique quantum properties. Conventional resonant optical sorting mainly relies on absorption and scattering forces, making it difficult to sort nanomaterials by specific emission lines. Furthermore, emission typically induces negligible force unless the material is highly anisotropic, limiting selective manipulation via emission characteristics.

View Article and Find Full Text PDF

Mycobacterial hemerythrin-like proteins (HLPs) are important for the survival of pathogens in macrophages. Their molecular mechanisms of function remain poorly defined but recent studies point to their possible role in nitric oxide (NO) scavenging. Unlike any nonheme diiron protein studied so far, the diferric HLP from (-HLP) reacts with NO in a multistep fashion to consume four NO molecules per diiron center.

View Article and Find Full Text PDF

Strategies for specific multimodal imaging of cancer-associated fibroblasts and applications in theranostics of cancer.

Mater Today Bio

February 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.

Fibroblast activating protein (FAP) is up-regulated in cancer-associated fibroblasts (CAFs) of more than 90 % of tumor microenvironment and also highly expressed on the surface of multiple tumor cells like glioblastoma, which can be used as a specific target for tumor diagnosis and treatment. At present, small-molecule radiotracer targeting FAP with high specificity exhibit limited functionality, which hinders the integration of theranostics as well as multifunctionality. In this work, we have engineered a multifunctional nanoplatform utilizing organic melanin nanoparticles that specifically targets FAP, facilitating both multimodal imaging and synergistic therapeutic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!