Advanced oxidation of biologically pretreated Baker's Yeast Industry effluents for high recalcitrant COD and color removal.

J Environ Sci Health A Tox Hazard Subst Environ Eng

Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.

Published: January 2004

The aim of this study was to investigate the effectiveness of chemical oxidation by applying ozonation, ozonation with hydrogen peroxide and Fenton's processes for decolorization and residual COD removal of biologically pretreated baker's yeast industry (BYI) effluents. Baker's yeast industry effluents characterizing with high COD, TKN, dark color, and non-biodegradable organic pollutants. The batch tests were performed to determine the optimum operating conditions including pH, O3, H2O2, and FeSO4 dosages, molar ratio of Fe2+/H2O2 and reaction time. It was noticed that H2O2 significantly reduced the reaction times for the same ozone dosages: however, COD and color removals were not remarkable. In the Fenton's oxidation studies, the removal efficiencies of COD and color for 30 min reaction time for three different types of BYI effluents were found about 86 and 92%, respectively. Experimental results of the presented study have clearly indicated that the Fenton's oxidation technology is capable to fate almost all parts of the organics which consist of both soluble initial and microbial inert fractions of COD for baker's yeast effluents. Effluents from the Fenton's oxidation process can satisfy effluent standards for COD and color in general.

Download full-text PDF

Source
http://dx.doi.org/10.1081/ese-120023370DOI Listing

Publication Analysis

Top Keywords

baker's yeast
16
cod color
16
yeast industry
12
fenton's oxidation
12
biologically pretreated
8
pretreated baker's
8
industry effluents
8
byi effluents
8
reaction time
8
cod
7

Similar Publications

Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.

View Article and Find Full Text PDF

The Impact of Selenium on the Physiological Activity of Yeast Cells ATCC 7090 and CCY 20-2-26.

Front Biosci (Landmark Ed)

January 2025

Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.

Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.

Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!