A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differences in the binding specificities of Pseudomonas aeruginosa M35 and Escherichia coli C600 for lipid-linked oligosaccharides with lactose-related core regions. | LitMetric

AI Article Synopsis

  • This study investigates how different lipid-linked oligosaccharides, particularly those containing lactose, interact with the bacteria Pseudomonas aeruginosa and Escherichia coli, revealing varying binding mechanisms and affinities.
  • Using assays on thin-layer chromatograms and microtiter wells, the research found that both bacteria bind to lipid-linked glycan structures, but only certain structures, particularly asialo GM1, showed significant binding differences between the two species.
  • Key findings suggest that modifications like sialylation and fucosylation generally reduced binding affinity, and variations in oligosaccharide length influenced binding outcomes, indicating these interactions could affect susceptibility to infections in damaged epithelial cells.

Article Abstract

Membrane glycolipids contain the lactose sequence (galactose linked to glucose), and the oligosaccharide is variously extended such that there is a cell-type-specific repertoire. In this study, binding of Pseudomonas aeruginosa M35 to lipid-linked lactose (Gal beta 1-4Glc [structure 1]), lacto-N-neotetraose (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc [structure 2]), lacto-N-tetraose (Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc [structure 3]), and asialo GM1 (Gal beta 1-3GalNAc beta 1-4Gal beta 1-4Glc [structure 4]) was evaluated and compared with binding of Escherichia coli C600 to these compounds. Oligosaccharides were linked to the lipid phosphatidylethanolamine dipalmitoate, and the resulting neoglycolipids were resolved on thin-layer chromatograms or coated onto plastic microtiter wells. Lipid-linked structures 1 to 4 were bound by P. aeruginosa and E. coli in the chromatogram assay, but only structure 4 was bound in the microtiter well assay. As shown previously for E. coli binding to lipid-linked structures 1 to 3, binding to lipid-linked structure 4 was not inhibited with oligosaccharide, indicating a requirement for lipid and oligosaccharide. With few exceptions, sialylation and fucosylation of structures 1 to 4 resulted in impaired or abolished binding. Comparisons of binding intensities in the chromatogram assay indicated that recognition by P. aeruginosa and recognition by E. coli are not identical. Presence of the additional disaccharide unit, as in structure 2, resulted in enhanced binding of P. aeruginosa but diminished binding of E. coli relative to lactose binding; fucosylation at galactose of lactose resulted in markedly diminished binding of P. aeruginosa only. In the microtiter well assay, binding of E. coli to asialo GM1 was much weaker than P. aeruginosa binding. The saccharide-plus-lipid-dependent adhesion may be an important factor in increased susceptibility to infection of epithelia already damaged by microbial and chemical agents; the differing strengths of adhesion to the structural variants may relate to tissue tropism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC258280PMC
http://dx.doi.org/10.1128/iai.60.12.5078-5084.1992DOI Listing

Publication Analysis

Top Keywords

gal beta
16
beta 1-4glc
16
1-4glc [structure
16
binding
12
beta
10
pseudomonas aeruginosa
8
aeruginosa m35
8
escherichia coli
8
coli c600
8
beta 1-3gal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!