Escherichia coli strains of serogroup O115:K(-):F165 have been associated with septicemia in calves and piglets. These strains express a capsular antigen referred to as K"V165" which inhibits agglutination of the O antigen by anti-O115 serum. We used hybrid transposon TnphoA mutants M48, 18b, and 2, and a spontaneous O-agglutinable mutant, 5131a, to evaluate the role of K"V165" in the pathogenicity of E. coli O115. Mutant M48 was as resistant to 90% rabbit serum and as virulent in day-old chickens as the parent strain 5131, mutants 18b and 5131a were less resistant to serum and less virulent in chickens, and mutant 2 was serum sensitive and avirulent. Analysis of outer membrane protein and lipopolysaccharide profiles failed to show any difference between the transposon mutants and the parent strain. In contrast, the spontaneous O-agglutinable mutant showed additional bands in the 16-kDa region of the polysaccharide ladder-like pattern. Mutants 2 and 5131a produced significantly less K"V165" capsular antigen than the parent strain, as demonstrated by a competitive enzyme-linked immunosorbent assay with adsorbed anti-K"V165" serum. In addition, electron microscopic analysis revealed that mutants 2 and 5131a had lost the capsular layer observed in the parent strain after fixation with glutaraldehyde-lysine. This capsule contained carbohydrate compounds and resembled an O-antigen capsule since it prevented O-antigen agglutination before the bacteria were heated at 100 degrees C and induced bacterial serum resistance. The capsule-defective mutants colonized the intestinal epithelium of experimentally infected gnotobiotic pigs but failed to induce clinical signs of septicemia. We concluded that E. coli strains of serogroup O115 expressed a polysaccharide capsular antigen which induced serum resistance and consequently contributed to the pathogenicity of the bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC258276PMC
http://dx.doi.org/10.1128/iai.60.12.5048-5056.1992DOI Listing

Publication Analysis

Top Keywords

capsular antigen
16
parent strain
16
polysaccharide capsular
8
escherichia coli
8
coli strains
8
strains serogroup
8
spontaneous o-agglutinable
8
o-agglutinable mutant
8
serum virulent
8
mutants 5131a
8

Similar Publications

Phages demonstrate remarkable promise as antimicrobial agents against antibiotic-resistant bacteria. However, the emergence of phage-resistant strains poses challenges to their effective application. In this paper, we presented the isolation of a phage adaptive mutant that demonstrated enhanced and sustained antibacterial efficacy through the co-evolution of () 111-2 and phage ZX1Δint .

View Article and Find Full Text PDF

is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.

View Article and Find Full Text PDF

Simplified process for preparing native and depolymerized capsular polysaccharides of Streptococcus pneumoniae.

Carbohydr Polym

March 2025

Beijing Minhai Biotechnology Co. Ltd, Beijing 102600, China. Electronic address:

Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S.

View Article and Find Full Text PDF

Isolation and characterisation of a heparosan capsular polysaccharide and a core oligosaccharide from Moraxella lincolnii strain CCUG 52988.

Carbohydr Res

March 2025

School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia. Electronic address:

Moraxella lincolnii is a Gram-negative bacterium that resides in the upper respiratory tract (URT) of humans and may have a role as a member of a protective microbial community. Structural characterisation studies of its outer membrane glycan structures are very limited. We report here the isolation and structural characterisation (NMR, GLC-MS) of a capsular polysaccharide (CPS) and an oligosaccharide (OS) (lipooligosaccharide (LOS)-derived) isolated from strain CCUG 52988.

View Article and Find Full Text PDF

Capsular polysaccharide restrains type VI secretion in .

Elife

January 2025

Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!