The TGF-beta signaling network plays a complex role in carcinogenesis because it has the potential to act as either a tumor suppressor or a pro-oncogenic pathway. Currently, it is not known whether TGF-beta can switch from tumor suppressor to pro-oncogenic factor during the course of carcinogenic progression in a single cell lineage with a defined initiating oncogenic event or whether the specific nature of the response is determined by cell type and molecular etiology. To address this question, we have introduced a dominant negative type II TGF-beta receptor into a series of genetically related human breast-derived cell lines representing different stages in the progression process. We show that decreased TGF-beta responsiveness alone cannot initiate tumorigenesis but that it can cooperate with an initiating oncogenic lesion to make a premalignant breast cell tumorigenic and a low-grade tumorigenic cell line histologically and proliferatively more aggressive. In a high-grade tumorigenic cell line, however, reduced TGF-beta responsiveness has no effect on primary tumorigenesis but significantly decreases metastasis. Our results demonstrate a causal role for loss of TGF-beta responsiveness in promoting breast cancer progression up to the stage of advanced, histologically aggressive, but nonmetastatic disease and suggest that at that point TGF-beta switches from tumor suppressor to prometastatic factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC198530PMC
http://dx.doi.org/10.1172/JCI18899DOI Listing

Publication Analysis

Top Keywords

tumor suppressor
16
tgf-beta responsiveness
12
tgf-beta
8
tgf-beta switches
8
switches tumor
8
suppressor prometastatic
8
prometastatic factor
8
breast cancer
8
cancer progression
8
suppressor pro-oncogenic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!