The recent discovery of direct interactions between two important regulators of cell fate, the tumor suppressor p53 and glycogen synthase kinase-3beta (GSK3beta), led us to examine the mechanism and outcomes of this interaction. Two regions of p53 were identified that regulate its binding to GSK3beta. Deletion of the p53 activation domain-1 (AD1), but not mutations that prevent MDM2 binding through the AD1 domain, enhanced GSK3beta binding to p53, indicating that the AD1 domain interferes with p53 binding to GSK3beta. Deletion of the p53 basic domain (BD) abrogated GSK3beta binding, and a ten amino acid region within the C-terminal BD domain was identified as necessary for binding to GSK3beta. GSK3beta activity was not required for p53 binding, but inhibition of GSK3beta stabilized the association, suggesting a transient interaction during which active GSK3beta promotes actions of p53. This regulatory role of GSK3beta was demonstrated by large reductions of p53-induced increases in the levels of MDM2, p21, and Bax when GSK3beta was inhibited. Besides promoting p53-mediated transcription, GSK3beta also contributed to mitochondrial p53 apoptotic signaling. After DNA damage, mitochondrial GSK3beta co-immunoprecipitated with p53 and was activated, and inhibition of GSK3beta blocked cytochrome c release and caspase-3 activation. Thus, GSK3beta interacts with p53 in both the nucleus and mitochondria and promotes its actions at both sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361697PMC
http://dx.doi.org/10.1074/jbc.M305870200DOI Listing

Publication Analysis

Top Keywords

gsk3beta
16
promotes actions
12
p53
12
binding gsk3beta
12
glycogen synthase
8
synthase kinase-3beta
8
kinase-3beta gsk3beta
8
actions p53
8
gsk3beta deletion
8
deletion p53
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!