Incorporation of docosahexaenoic acid into nerve membrane phospholipids: bridging the gap between animals and cultured cells.

Am J Clin Nutr

Nutrition & Food Safety Laboratory, Neurobiology of Lipids, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.

Published: October 2003

Background: Functional maturation of nervous tissues depends on membrane accretion of docosahexaenoic acid (DHA). Animal studies have shown that incorporation of dietary DHA into membrane phospholipids is dose dependent. The molecular effects of DHA are commonly studied in cultured cells, but questions remain about the physiologic connection between animal and cell models.

Objective: We developed a linear model for comparing the responses of rat nervous tissues to dietary DHA with the responses of human cell lines to DHA in medium.

Design: Rats were rendered chronically deficient in n-3 fatty acids by being reared on a peanut oil diet. DHA status was replenished in the F2 generation by using increasing supplements of a microalgal oil. Human retinoblastoma and neuroblastoma cells were dosed with unesterified DHA. DHA accumulation into phospholipids was defined by the plateau of the dose-response curve (DHA(max)) and by the supplement required to produce one-half the DHA(max) (DHA(50)).

Results: The DHA(max) values for 4 brain regions and 2 neuroblastoma lines were similar, and the value for the retinoblastoma line was similar to the retinal value. Expressing the DHA input as micro mol/10 g diet and as micro mol/L medium resulted in similar values for the ratio of DHA(max) to DHA(50) in the 4 brain regions and the 3 cell lines. The DHA(max)-DHA(50) ratios in the ethanolamine phosphoglyceride and phosphatidylcholine fractions in retinal phospholipids were 6 and 10 times, respectively, those in the brain and cultured cells.

Conclusions: The dose-dependent responses of cells and the brain to DHA supplements can be compared by using DHA(max)-DHA(50) ratios. We propose a counting frame that allows the comparison of the dose responses of the brain and cells to exogenous DHA.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/78.4.702DOI Listing

Publication Analysis

Top Keywords

dha
11
docosahexaenoic acid
8
membrane phospholipids
8
cultured cells
8
nervous tissues
8
dietary dha
8
cell lines
8
brain regions
8
dhamax-dha50 ratios
8
cells
5

Similar Publications

Role of DHA in a Physicochemical Study of a Model Membrane of Grey Matter.

Membranes (Basel)

December 2024

Laboratory of Physical-Chemistry, Department of Chemistry, Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Argentina.

The present study investigates a multicomponent lipid system that simulates the neuronal grey matter membrane, employing molecular acoustics as a precise, straightforward, and cost-effective methodology. Given the significance of omega-3 polyunsaturated fatty acids in the functionality of cellular membranes, this research examines the effects of reducing 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) content on the compressibility and elasticity of the proposed membrane under physiological conditions. Our results align with bibliographic data obtained through other techniques, showing that as the proportion of PDPC increases in the grey matter membrane model, the system's compressibility decreases, and the membrane's elasticity increases, as evidenced by the reduction in the bulk modulus.

View Article and Find Full Text PDF

Purpose: The retina contains the highest concentration of the omega 3 fatty acid, docosahexaenoic acid (DHA), in the body. Although epidemiologic studies showed an inverse correlation between the consumption of omega 3 fatty acids and the prevalence of diabetic retinopathy, there are no data showing the effect of diabetes on retinal DHA in humans. In this study, we measured the DHA content of the retina in diabetic and non-diabetic humans as well as mice and determined the effect of diabetes on retinal thickness and function in mice.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes.

View Article and Find Full Text PDF

The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue a rational DHA/EPA ratio. In this study, synthetic biological strategy was applied to improve EPA production in .

View Article and Find Full Text PDF

A new antioxidant lipid (AL) was synthesized from rainbow trout () belly oil and cold-pressed maqui (CPM) ( (Mol.) Stuntz) seed oil via enzymatic interesterification using in supercritical CO medium. A Box-Behnken design with 15 experiments was employed, with the independent variables being the following: belly oil/CPM oil ratio (10/90, 50/50, and 90/10, /), supercritical CO temperature (40.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!