We have exploited the intrinsic conformational flexibility of leghemoglobin to reengineer the heme active site architecture of the molecule by replacement of the mobile His61 residue with tyrosine (H61Y variant). The electronic absorption spectrum of the ferric derivative of H61Y is similar to that observed for the phenolate derivative of the recombinant wild-type protein (rLb), consistent with coordination of Tyr61 to (high-spin) iron. EXAFS data clearly indicate a 6-coordinate heme geometry and a Fe-O bond length of 185pm. MCD and EPR spectroscopies are consistent with this assignment and support ligation by an anionic (tyrosinate) group. The alteration in heme ligation leads to a 148mV decrease in the reduction potential for H61Y (-127+/-5mV) compared to rLb and destabilisation of the functional oxy-derivative. The results are discussed in terms of our wider understanding of other heme proteins with His-Tyr ligation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-9861(03)00403-xDOI Listing

Publication Analysis

Top Keywords

conformational flexibility
8
flexibility leghemoglobin
8
heme
5
exploiting conformational
4
leghemoglobin framework
4
framework examination
4
examination heme
4
heme protein
4
protein axial
4
ligation
4

Similar Publications

In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts.

View Article and Find Full Text PDF

Evolution of intrinsic disorder in the structural domains of viral and cellular proteomes.

Sci Rep

January 2025

Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.

Intrinsically disordered regions are flexible regions that complement the typical structured regions of proteins. Little is known however about their evolution. Here we leverage a comparative and evolutionary genomics approach to analyze intrinsic disorder in the structural domains of thousands of proteomes.

View Article and Find Full Text PDF

Background: The Plasmodium proteasome emerges as a promising target for anti-malarial drug development due to its potential activity against multiple life cycle stages.

Methods: In this investigation, a comparative analysis was conducted on the structural features of the β5 subunit in the 20S proteasomes of both Plasmodium and humans.

Results: The findings underscore the structural diversity inherent in both proteasomes.

View Article and Find Full Text PDF

RNA plays a crucial role not only in information transfer as messenger RNA during gene expression but also in various biological functions as non-coding RNAs. Understanding mechanical mechanisms of function needs tertiary structure information; however, experimental determination of three-dimensional RNA structures is costly and time-consuming, leading to a substantial gap between RNA sequence and structural data. To address this challenge, we developed NuFold, a novel computational approach that leverages state-of-the-art deep learning architecture to accurately predict RNA tertiary structures.

View Article and Find Full Text PDF

Conformational flexibility of human ribokinase captured in seven crystal structures.

Int J Biol Macromol

January 2025

Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland and Labrador, Canada. Electronic address:

d-ribose is a critical sugar substrate involved in the biosynthesis of nucleotides, amino acids, and cofactors, with its phosphorylation to ribose-5-phosphate by ribokinase (RK) constituting the initial step in its metabolism. RK is conserved across all domains of life, and its activity is significantly enhanced by monovalent metal (M) ions, particularly K, although the precise mechanism of this activation remains unclear. In this study, we present several crystal structures of human RK in both unliganded and substrate-bound states, offering detailed insights into its substrate binding process, reaction mechanism, and conformational changes throughout the catalytic cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!