Background: Kinesin II-mediated anterograde intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia in various cell types. Kinesin associated protein (KAP) is identified as the non-motor accessory subunit of Kinesin II, but its role in the corresponding motor function is not understood.

Results: We show that mutations in the Drosophila KAP (DmKap) gene could eliminate the sensory cilia as well as the sound-evoked potentials of Johnston's organ (JO) neurons. Ultrastructure analysis of these mutants revealed that the ciliary axonemes are absent. Mutations in Klp64D, which codes for a Kinesin II motor subunit in Drosophila, show similar ciliary defects. All these defects are rescued by exclusive expression of DmKAP and KLP64D/KIF3A in the JO neurons of respective mutants. Furthermore, reduced copy number of the DmKap gene was found to enhance the defects of hypomorphic Klp64D alleles. Unexpectedly, however, both the DmKap and the Klp64D mutant adults produce vigorously motile sperm with normal axonemes.

Conclusions: KAP plays an essential role in Kinesin II function, which is required for the axoneme growth and maintenance of the cilia in Drosophila type I sensory neurons. However, the flagellar assembly in Drosophila spermatids does not require Kinesin II and is independent of IFT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2003.09.025DOI Listing

Publication Analysis

Top Keywords

drosophila kap
8
kinesin motor
8
motor subunit
8
sensory cilia
8
dmkap gene
8
kinesin
7
drosophila
5
kap interacts
4
interacts kinesin
4
klp64d
4

Similar Publications

The heterotrimeric kinesin-2 consists of two distinct motor subunits and an accessory protein, KAP, which binds to the coiled-coil stalk domains and one of the tail domains of the motor subunits. Genetic studies revealed that KAP is essential for the kinesin-2 functions in cilia, flagella, and axon. However, the structural significance of the KAP binding on kinesin-2 assembly and stability is not known.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by a CAG expansion in the gene leading to a polyglutamine expansion in the ataxin-3 protein. The nuclear presence and aggregation of expanded ataxin-3 are critical steps in disease pathogenesis. To identify novel therapeutic targets, we investigated the nucleocytoplasmic transport system by screening a collection of importins and exportins that potentially modulate this nuclear localization.

View Article and Find Full Text PDF

Transcripts immunoprecipitated with Sxl protein in primordial germ cells of Drosophila embryos.

Dev Growth Differ

December 2017

Life Science Center of Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Tsukuba, 305-8577, Japan.

In Drosophila, Sex lethal (Sxl), an RNA binding protein, is required for induction of female sexual identity in both somatic and germline cells. Although the Sxl-dependent feminizing pathway in the soma was previously elucidated, the downstream targets for Sxl in the germline remained elusive. To identify these target genes, we selected transcripts associated with Sxl in primordial germ cells (PGCs) of embryos using RNA immunoprecipitation coupled to sequencing (RIP-seq) analysis.

View Article and Find Full Text PDF

Crystal structure of importin-α3 bound to the nuclear localization signal of Ran-binding protein 3.

Biochem Biophys Res Commun

September 2017

Division of Biological Science, Graduate School of Science, Nagoya University, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Japan. Electronic address:

Ran-binding protein 3 (RanBP3) is a primarily nuclear Ran-binding protein that functions as an accessory factor in the Ran GTPase system. RanBP3 associates with Ran-specific nucleotide exchange factor RCC1 and enhances its catalytic activity towards Ran. RanBP3 also promotes CRM1-mediated nuclear export as well as CRM1-independent nuclear export of β-catenin, Smad2, and Smad3.

View Article and Find Full Text PDF

Gα12 structural determinants of Hsp90 interaction are necessary for serum response element-mediated transcriptional activation.

Mol Pharmacol

April 2014

Department of Biology, University of North Carolina at Asheville, Asheville, North Carolina (E.R.M., B.K.B., J.W.M., T.P.H., A.C.T., W.C.S., T.E.M.); Departments of Biology (K.A.P., S.L.R., A.M.J.), Biochemistry and Biophysics (B.R.S.T.), Cell Biology and Physiology (C.E.T.), and Pharmacology (A.M.J.), R. L. Juliano Structural Bioinformatics Core Facility (B.R.S.T.), and Carolina Center for Genome Sciences (S.L.R.), University of North Carolina, and the Lineberger Comprehensive Cancer Center, (S.L.R., T.E.M.), Chapel Hill, North Carolina.

The G12/13 class of heterotrimeric G proteins, comprising the α-subunits Gα12 and Gα13, regulates multiple aspects of cellular behavior, including proliferation and cytoskeletal rearrangements. Although guanine nucleotide exchange factors for the monomeric G protein Rho (RhoGEFs) are well characterized as effectors of this G protein class, a variety of other downstream targets has been reported. To identify Gα12 determinants that mediate specific protein interactions, we used a structural and evolutionary comparison between the G12/13, Gs, Gi, and Gq classes to identify "class-distinctive" residues in Gα12 and Gα13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!