[Study on meteorological factors-based neural network model of malaria].

Zhonghua Liu Xing Bing Xue Za Zhi

Airforce Center for Diseases Control, Sanitation and Anti-epidemic Team, Logistics Department, Airforce, Beijing 100076, China.

Published: September 2003

Objective: In order to provide reliable data for strategies development on prevention, a meteorological factors-based predicating model for malaria forecast was studied.

Methods: Data on malaria occurrence and climate changes from 1994 to 1999 in counties in Yunnan province was collected and analyzed with software packages of FoxPro 6.0 and Excel 5.0. The forecasting model for malaria occurrence was established, using the Neural Network Toolbox of Matlab 6.1 software package. In the studies of forecasting model, data of malaria and meteorological factors from 1994 to 1999 in Honghe state in Yunnan province was chosen. The meteorological factors included average monthly pressure, air temperature, relative humidity, monthly maximum air temperature, minimum air temperature, rainfall, rainday, evaporation and sunshine hours in the study. The established forecasting model was also tested and verified.

Results: The BP network model was established according to data of diseases and meteorological factors from Honghe state in Yunnan province. After training the neural network for 100 times, the error of performance decreased from 3.23608 to 0.035862. Verified by fact data of malaria, the efficiency of malaria forecasting was 84.85%.

Conclusion: Neural network model was effective for forecasting malaria. It showed advantages as: strong ability for analysis, lower claim for data, convenient and easy to apply etc. Neural network model might be used as a new method for malaria forecasting.

Download full-text PDF

Source

Publication Analysis

Top Keywords

neural network
20
network model
16
data malaria
12
yunnan province
12
forecasting model
12
meteorological factors
12
air temperature
12
meteorological factors-based
8
model
8
malaria
8

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.

View Article and Find Full Text PDF

Automatic 4D mitral valve segmentation from transesophageal echocardiography: a semi-supervised learning approach.

Med Biol Eng Comput

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used.

View Article and Find Full Text PDF

Deep Neural Network Analysis of the 12-Lead Electrocardiogram Distinguishes Patients With Congenital Long QT Syndrome From Patients With Acquired QT Prolongation.

Mayo Clin Proc

January 2025

Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN. Electronic address:

Objective: To test whether an artificial intelligence (AI) deep neural network (DNN)-derived analysis of the 12-lead electrocardiogram (ECG) can distinguish patients with long QT syndrome (LQTS) from those with acquired QT prolongation.

Methods: The study cohort included all patients with genetically confirmed LQTS evaluated in the Windland Smith Rice Genetic Heart Rhythm Clinic and controls from Mayo Clinic's ECG data vault comprising more than 2.5 million patients.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.

Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!