Identification and prediction of promiscuous aggregating inhibitors among known drugs.

J Med Chem

Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, USA.

Published: October 2003

Some small molecules, often hits from screening, form aggregates in solution that inhibit many enzymes. In contrast, drugs are thought to act specifically. To investigate this assumption, 50 unrelated drugs were tested for promiscuous inhibition via aggregation. Each drug was tested against three unrelated model enzymes: beta-lactamase, chymotrypsin, and malate dehydrogenase, none of which are considered targets of these drugs. To be judged promiscuous, the drugs had to inhibit all three enzymes, do so in a time-dependent manner, be sensitive to detergent and to enzyme concentration, and form particles detectable by light scattering. Of the 50 drugs tested, 43 were nonpromiscuous by these criteria. Surprisingly, four of the drugs showed promiscuous, aggregation-based inhibition at concentrations below 100 microM: clotrimazole, benzyl benzoate, nicardipine, and delavirdine. Three other drugs also behaved as aggregation-based inhibitors, but only at high concentrations (about 400 microM). To investigate possible structure-activity relationships among promiscuous drugs, five analogues of the antifungal clotrimazole were studied. Three of these, miconazole, econazole, and sulconazole, were promiscuous but the other two, fluconazole and ketoconazole, were not. Using recursive partitioning, these experimental results were used to develop a model for predicting aggregate-based promiscuity. This model correctly classified 94% of 111 compounds-47 aggregators and 64 nonaggregators-that have been studied for this effect. To evaluate the model, it was used to predict the behavior of 75 drugs not previously investigated for aggregation. Several preliminary points emerge. Most drugs are not promiscuous, even at high concentrations. Nevertheless, at high enough concentrations (20-400 microM), some drugs can aggregate and act promiscuously, suggesting that aggregation may be common among small molecules at micromolar concentrations, at least in biochemical buffers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm030191rDOI Listing

Publication Analysis

Top Keywords

drugs
12
high concentrations
12
small molecules
8
drugs tested
8
promiscuous drugs
8
drugs promiscuous
8
promiscuous
7
concentrations
5
identification prediction
4
prediction promiscuous
4

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Anti-Mycobacterial Activity of Bacterial Topoisomerase Inhibitors with Dioxygenated Linkers.

ACS Infect Dis

January 2025

Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States.

Developing new classes of drugs that are active against infections caused by is a priority for treating and managing this deadly disease. Here, we describe screening a small library of 20 DNA gyrase inhibitors and identifying new lead compounds. Three structurally diverse analogues were identified with minimal inhibitory concentrations of 0.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi is a protozoan parasite which causes Chagas disease. Mother-to-child transmission is the main route of transmission in vector-free areas. Congenital Chagas disease refers specifically to cases arising from this route of transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!