The neuropathology of the autism spectrum disorders: what have we learned?

Novartis Found Symp

Children's Neurology Service, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.

Published: February 2004

Autism is a behaviourally defined disorder, initially described by Kanner in 1943. By definition, symptoms are manifested by 36 months of age and are characterized by delayed and disordered language, impaired social interaction, abnormal responses to sensory stimuli, events and objects, poor eye contact, an insistence on sameness, an unusual capacity for rote memory, repetitive and stereotypic behaviour and a normal physical appearance. Relatively few neuropathological studies have been performed on the brains of autistic subjects. Of those reported, abnormalities have been described in the cerebral cortex, the brainstem, the limbic system and the cerebellum. Although those with the disorder present with a specific set of core characteristics, each individual patient is somewhat different from another. Thus, it should not be surprising that the brains of these subjects should show a wide range of abnormalities. However, it is important to delineate the anatomic features, which are common to all cases, regardless of age, sex and IQ, in order to begin to understand the central neurobiological profile of this disorder. The results of our systematic studies indicate that the anatomic features that are consistently abnormal in all cases include reduced numbers of Purkinje cells in the cerebellum, and small tightly packed neurons in the entorhinal cortex and in the medially placed nuclei of the amygdala. It is known that the limbic system is important for learning and memory, and that the amygdala plays a role in emotion and behaviour. Research in the cerebellum indicates that this structure is important as a modulator of a variety of brain functions and impacts on language processing, anticipatory and motor planning, mental imagery and timed sequencing. Defining the differences and similarities in brain anatomy in autism and correlating these observations with detailed clinical descriptions of the patient may allow us greater insight into the underlying neurobiology of this disorder.

Download full-text PDF

Source

Publication Analysis

Top Keywords

limbic system
8
anatomic features
8
neuropathology autism
4
autism spectrum
4
spectrum disorders
4
disorders learned?
4
learned? autism
4
autism behaviourally
4
behaviourally defined
4
disorder
4

Similar Publications

Long-term effects of social play on neural and behavioral development remain unclear. We investigated whether just 1 h of juvenile social play could rescue the effects of play deprivation on stress-related behavior and markers of neural plasticity. Syrian hamsters were reared from postnatal days 21-43 in three conditions: peer isolation, peer isolation with daily social play sessions (dyadic play), or group-housed with littermates.

View Article and Find Full Text PDF

When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval.

View Article and Find Full Text PDF

Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the "Forrest Gump" open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task.

View Article and Find Full Text PDF

The hypothalamus as the central regulator of energy balance and its impact on current and future obesity treatments.

Arch Endocrinol Metab

January 2025

Universidade de Campinas Centro de Pesquisa em Obesidade e Comorbidades CampinasSP Brasil Centro de Pesquisa em Obesidade e Comorbidades, Universidade de Campinas, Campinas, SP, Brasil.

The hypothalamus is a master regulator of energy balance in the body. First-order hypothalamic neurons localized in the arcuate nucleus sense systemic signals that indicate the energy stores in the body. Through distinct projections, arcuate nucleus neurons communicate with second-order neurons, which are mostly localized in the paraventricular nucleus and in the lateral hypothalamus.

View Article and Find Full Text PDF

Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!