In a prospective phase I/II clinical study, we treated eight patients suffering from recurrent glioblastoma multiform with stereotactically guided intratumoral convection-enhanced delivery of an HSV-1-tk gene-bearing liposomal vector and systemic ganciclovir. Noninvasive identification of target tissue together with assessment of vector-distribution volume and the effects of gene therapy were achieved using magnetic resonance imaging and positron emission tomography. The treatment was tolerated well without major side effects. In two of eight patients, we observed a greater than 50% reduction of tumor volume and in six of eight patients focal treatment effects. Intracerebral infusion of contrast medium before vector application displayed substantial inhomogeneity of tissue staining indicating the need of test infusions to monitor the mechanical distribution of vectors. Visualization of therapeutic effects on tumor metabolism and documentation of gene expression using positron emission tomography indicated that molecular imaging technology appears to be essential for the further development of biological treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.10688DOI Listing

Publication Analysis

Top Keywords

convection-enhanced delivery
8
gene therapy
8
positron emission
8
emission tomography
8
imaging-guided convection-enhanced
4
delivery gene
4
therapy glioblastoma
4
glioblastoma prospective
4
prospective phase
4
phase i/ii
4

Similar Publications

The blood-brain barrier (BBB) remains an obstacle for delivery of chemotherapeutic agents to gliomas. High grade and recurrent gliomas continue to portend a poor prognosis. Multiple methods of bypassing or manipulating the BBB have been explored, including hyperosmolar therapy, convection-enhanced delivery (CED), laser-guided interstitial thermal therapy (LITT), and Magnetic Resonance Guided Focused Ultrasound (MRgFUS) to enhance delivery of chemotherapeutic agents to glial neoplasms.

View Article and Find Full Text PDF

Background: Irinotecan demonstrates anti-tumor efficacy in preclinical glioma models but clinical results are modest due to drug delivery limitations. Convection enhanced delivery (CED) improves drug delivery by increasing intratumoral drug concentration. Real-time magnetic resonance imaging of infusate delivery during CED may optimize tumor coverage.

View Article and Find Full Text PDF

Diffuse Intrinsic Pontine Glioma and Chimeric Antigen Receptor T-Cell Therapy: An Emerging Frontier.

World Neurosurg

January 2025

Department of Paediatric Neurosurgery, Children's Hospital named after Prof. Jan Bogdanowicz in Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Medical Academy, Warsaw, Poland. Electronic address:

This study explores the integration of chimeric antigen receptor T-cell (CAR-T) therapy with convection-enhanced delivery (CED) as a novel approach for treating diffuse intrinsic pontine glioma, a highly aggressive pediatric brain tumor with limited treatment options. Preliminary clinical results indicate that CED improves CAR-T cell distribution within the tumor microenvironment, leading to promising antitumor responses. However, challenges such as catheter-related complications and potential on-target/off-tumor toxicity remain.

View Article and Find Full Text PDF

Convection-enhanced delivery of [Lu]Lu-labeled gold nanoparticles combined with anti-PD1 checkpoint immunotherapy improves the survival of immunocompetent C57BL/6J mice with orthotopic GL261 murine glioma tumors.

Nucl Med Biol

November 2024

Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program, University Health Network, Toronto, ON, Canada. Electronic address:

Introduction: Our objective was to study convection enhanced delivery (CED) of Lu-labeled metal chelating polymer (MCP) conjugated to gold nanoparticles ([Lu]Lu-MCP-AuNP) alone or combined with anti-PD1 immune checkpoint inhibition (ICI) for improving the survival of immunocompetent C57BL/6J mice with orthotopic GL261 murine glioma tumors.

Methods: C57BL/6J mice with GL261 tumors were treated with [Lu]Lu-MCP-AuNP (0.8 or 2.

View Article and Find Full Text PDF

Direct Convective Delivery for Nervous System Gene Therapy.

Neurosurg Clin N Am

January 2025

Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.

Convection-enhanced delivery for central nervous system gene therapy is an emerging treatment strategy to modify the course of previously untreatable or inadequately treated neurologic conditions, including brain tumors, metabolic disorders, epilepsy, and neurodegenerative disorders. Ongoing nervous system gene therapy clinical trials highlight advantages and ongoing challenges to this therapeutic paradigm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!