Poly(ADP-ribose) polymerase (PARP) activation after free-radical-induced DNA damage depletes cellular energy stores and participates in ischemia-reflow injury. We studied the potential protective effect of the water-soluble PARP inhibitor 3-aminobenzamide (3-AB) in a rat model of acute renal failure (ARF) from combined administration of radiocontrast, indomethacin and N(omega)-nitro-L-arginine methyl ester. Kidney function at 24 h was better preserved in rats treated with 3-AB as compared to control animals. However, the extent of tubular hypoxic damage was not significantly mitigated. It is concluded that PARP inhibition may attenuate renal dysfunction in this model of ARF with medullary hypoxic tubular injury even while the extent of tubular necrosis is not significantly altered. Further studies of this dyssynchrony of structure and function may provide important insights into the sequence of events that promotes renal failure after medullary injury.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000073023DOI Listing

Publication Analysis

Top Keywords

polyadp-ribose polymerase
8
medullary hypoxic
8
hypoxic damage
8
renal failure
8
extent tubular
8
polymerase inhibition
4
inhibition outer
4
outer medullary
4
damage polyadp-ribose
4
polymerase parp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!