The stepwise chromatographic behaviour on DEAE-Sepharose of rat Fe65, a neuronal protein, was tested, using as eluants KCl, CaCl2, and MgCl2. Assays by western blot showed that Fe65 was eluted by CaCl2, at a ionic strength 20% lower than that of MgCl2 or KCl. Interestingly, in the case of a truncated Fe65, lacking a glutamic acid rich region at the N-terminus, the ionic strengths of the various eluants were almost identical. These results suggested a possible inhibitory role of calcium ions in the binding of the protein to DEAE and a specific affinity of these ions for long acidic stretches.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.67.2048DOI Listing

Publication Analysis

Top Keywords

long acidic
8
chromatographic behaviour
8
acidic domain
4
domain chromatographic
4
behaviour neuronal
4
neuronal adaptor
4
adaptor protein
4
protein deae-sepharose
4
deae-sepharose stepwise
4
stepwise chromatographic
4

Similar Publications

Purpose Of Review: Malnutrition is a significant comorbidity in Chronic Obstructive Pulmonary Disease (COPD), contributing to disease progression and reduced quality of life. This narrative review examines the role of nutritional therapy in the prevention and management of malnutrition in COPD, emphasizing evidence-based approaches and their clinical implications.

Recent Findings: COPD patients face increased metabolic demands, systemic inflammation, and reduced dietary intake, resulting in muscle wasting, sarcopenia, and cachexia.

View Article and Find Full Text PDF

Phosphorus (P) availability in soils is often constrained by its accumulation in non-labile phosphorus (NLP) forms, limiting its accessibility to plants. This study examines how soil physical properties, chemical characteristics, and climatic conditions influence phosphorus fractionation and the transformation of NLP into plant-available labile phosphorus (LP). Utilizing global structural equation modeling (SEM), we found that silt content enhances organic phosphorus fractions, including NaHCO-Po and NaOH-Po.

View Article and Find Full Text PDF

Direct Hot Solid-Liquid Extraction (DH-SLE): A High-Yield Greener Technique for Lipid Recovery from Coffee Beans.

Plants (Basel)

January 2025

Departamento de Química, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil.

Soxhlet extraction is a method recommended by the Association of Official Analytical Chemists (AOAC) to determine the lipid content in plant samples. Generally, n-hexane (toxicity grade 5) is used as the solvent (≈300 mL; ≈30 g sample) at boiling temperatures (69 °C) for long times (≤16 h) under a chilled water reflux (≈90 L/h), proportionally aggravated by the number of repetitions and samples determined. In this sense, the technique is neither safe nor sustainable for the analyst or the environment.

View Article and Find Full Text PDF

Background: Preterm infants (PIs) are more susceptible to neurodevelopmental impairment compared with term newborns. Adequate postnatal growth has been associated with improved neurocognitive outcomes; therefore, optimization of nutrition may positively impact the neurodevelopment of PIs.

Objective: This study focused on macronutrient parenteral nutrition (PN) intake during the Neonatal Intensive Care Unit stay and their associations with neurodevelopmental outcomes in PIs in the first two years of life.

View Article and Find Full Text PDF

Copepod Lipidomics: Fatty Acid Substituents of Structural Lipids in , a Dominant Species in the Food Chain of the Apalachicola Estuary of the Gulf of Mexico.

Life (Basel)

December 2024

Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA.

Zooplanktonic copepods represent a major biological mass in the marine food chain that can be affected by climate change. Monitoring the health of this critical biomass is essential for increasing our understanding of the impact of environmental changes on marine environments. Since the lipidomes of marine organisms are known to adapt to alterations in pH, temperature, and availability of metabolic precursors, lipidomics is one technology that can be used for monitoring copepod adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!