Differential coupling of m-cholinoceptors to Gi/Go-proteins in failing human myocardium.

J Mol Cell Cardiol

Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Abteilung für Pharmakologie, Universitätsklinikum Hamburg, Eppendorf Martinistrasse 52, 20246 Hamburg, Germany.

Published: October 2003

Muscarinic acetylcholine receptors (mAChRs) mediate their main cardiac effects via pertussis toxin-sensitive G-proteins. Physiological effects differ considerably between atrium and ventricle, and it is unknown to which extent these differences derive from selective receptor-G-protein coupling or further downstream events. We have characterized specific coupling between mAChRs and Gi/Go-protein isoforms in atrial and ventricular myocardium by agonist-dependent photoaffinity labeling with [(32)P]azidoanilido GTP (aaGTP) and immunoprecipitation in sarcolemmal membranes from terminally failing human hearts. The total amount of mAChRs, as determined by specific binding of [(3)H]QNB, was significantly higher in right-atrial (RA +/- SEM, 959 +/- 68 fmol/mg, n = 4) than in left-ventricular membranes (LV, 582 +/- 53 fmol/mg, n = 6). Standardized immunoblots revealed that Gialpha-2 was the predominant subtype in both regions. A 40-kDa splice variant of Goalpha (Goalpha-1 and/or Goalpha-3) was almost exclusively detectable in RA. Levels of Gialpha-3 and a 39-kDa splice variant of Goalpha (Goalpha-2) were also higher in RA. Basal aaGTP binding was higher in RA than in LV for all Gialpha/Goalpha subtypes. The carbachol (10 micromol/l)-induced increase in aaGTP binding was significantly higher in RA than in LV for Goalpha-1/3 (336 +/- 95% of LV, n = 4) and for Gialpha-3 (211 +/- 83%), lower for Gialpha-2 (42 +/- 5%), and was similar in both regions for Goalpha-2 (130 +/- 62%). The differential coupling of mAChRs in human RA and LV suggests that the initiation of different physiological responses to mAChR stimulation starts with signal sorting at the receptor-G-protein level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-2828(03)00235-9DOI Listing

Publication Analysis

Top Keywords

differential coupling
8
failing human
8
coupling machrs
8
+/- fmol/mg
8
splice variant
8
variant goalpha
8
aagtp binding
8
binding higher
8
+/-
7
coupling m-cholinoceptors
4

Similar Publications

Late-onset rheumatoid arthritis (LORA) presents a unique diagnostic challenge among older patients, particularly in poorly resourced healthcare settings. As global life expectancy increases, so does the prevalence of LORA, a condition that differs significantly from young-onset rheumatoid arthritis (YORA). This review explores the distinct clinical presentation, differential diagnosis, laboratory findings, and treatment challenges of LORA, emphasising its impact on low- and middle-income countries.

View Article and Find Full Text PDF

Background: Osteoporosis (OP) is a systemic disease characterized by low bone mass. New progress has been made in the study of OP, such as lipid peroxidation. However, the role of lipid peroxides in osteoclast differentiation is still unclear.

View Article and Find Full Text PDF

Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.

View Article and Find Full Text PDF

The enzyme 4-oxo-l-proline reductase (BDH2) has recently been identified in humans. BDH2, previously thought to be a cytosolic ()-3-hydroxybutyrate dehydrogenase, actually catalyzes the NADH-dependent reduction of 4-oxo-l-proline to -4-hydroxy-l-proline, a compound with known anticancer activity. Here we provide an initial mechanistic characterization of the BDH2-catalyzed reaction.

View Article and Find Full Text PDF

Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!