A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Upregulation of GLUT1 expression is necessary for hypertrophy and survival of neonatal rat cardiomyocytes. | LitMetric

Upregulation of GLUT1 expression is necessary for hypertrophy and survival of neonatal rat cardiomyocytes.

J Mol Cell Cardiol

Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.

Published: October 2003

During hypertrophy the heart increases its utilization of glucose and decreases that of fatty acids, resuming a fetal pattern of substrate metabolism. As demonstrated here, GLUT1 protein expression is increased in association with in vivo pressure-overload-induced hypertrophy. The relationship of changes in GLUT1 to enhanced glucose uptake and to cardiomyocyte hypertrophy and survival is not known. To explore this question we first examined the effect of prostaglandin F2alpha (PGF2alpha), an established hypertrophic agonist, on GLUT1 expression and glucose uptake in neonatal rat ventricular myocytes (NRVMs). PGF2alpha treatment for 24 h led to a fivefold increase in GLUT1 expression and a sixfold increase in glucose uptake. However, NRVMs cultured in the absence of glucose or with 3-O-methyl glucose, a competitive inhibitor of glucose uptake, still exhibited PGF2alpha-induced hypertrophic growth. In addition, we determined that overexpression of GLUT1 using adenovirus was insufficient to cause an increase in cell size, myofibrillar organization, or atrial natriuretic factor (ANF) expression. On the other hand, adenoviral overexpression of antisense GLUT1 (which blocked PGF2alpha-induced increases in GLUT1 protein) prevented PGF2alpha-stimulated cell enlargement and increases in ANF transcription. Overexpression of GLUT1 or addition of PGF2alpha also protected cells against serum deprivation-induced apoptosis; this effect was blocked by antisense GLUT1 but, surprisingly, was not dependent on glucose. Together, these data suggest that upregulation of GLUT1 serves a role in agonist-induced hypertrophy and survival which can be dissociated from its role in glucose transport.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-2828(03)00212-8DOI Listing

Publication Analysis

Top Keywords

glucose uptake
16
glut1 expression
12
hypertrophy survival
12
glut1
10
glucose
9
upregulation glut1
8
neonatal rat
8
glut1 protein
8
overexpression glut1
8
antisense glut1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!