Mass overloading in the flow field-flow fractionation channel studied by the behaviour of the ultra-large wheat protein glutenin.

J Chromatogr A

Department of Technical Analytical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden.

Published: September 2003

Flow field-flow fractionation (FFF) has previously been used in successful fractionation and characterisation of the ultra-large wheat protein glutenin. The many parameters, which may influence the retention behaviour, especially when analysing extremely high-molecular-mass samples such as glutenin, are here reported. Size determination from the sample retention time, using FFF theory, will as a result have a very low accuracy. The need for direct molecular mass determination, such as by light scattering, in combination with FFF, in order to do accurate size measurements of glutenin is pointed out as well as the importance to minimise the overloading.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(03)01145-2DOI Listing

Publication Analysis

Top Keywords

flow field-flow
8
field-flow fractionation
8
ultra-large wheat
8
wheat protein
8
protein glutenin
8
mass overloading
4
overloading flow
4
fractionation channel
4
channel studied
4
studied behaviour
4

Similar Publications

Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are the most advanced delivery system currently available for RNA therapeutics. Their development has accelerated since the success of Patisiran, the first siRNA-LNP therapeutic, and the mRNA vaccines that emerged during the COVID-19 pandemic. Designing LNPs with specific targeting, high potency, and minimal side effects is crucial for their successful clinical use.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Methylcellulose enhances resolution in gravitational field-flow fractionation: Going beyond viscosity.

J Chromatogr A

December 2024

Department "Area Materno-Infantile" Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan Italy.

Gravitational Field-Flow Fractionation (GrFFF) is an elution-based method designed for the separation of particles ranging from a few micrometers up to approximately 100 μm in diameter. Separation occurs over time, with particles being fractionated based on size and other physico-chemical properties. GrFFF takes advantage of gravitational forces acting perpendicularly to a laminar flow in a thin channel.

View Article and Find Full Text PDF

Substrate stiffness modulates extracellular vesicles' release in a triple-negative breast cancer model.

Extracell Vesicles Circ Nucl Acids

September 2024

Nano-Innovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy.

Aim: The microenvironment effect on the tumoral-derived Extracellular Vesicle release, which is of significant interest for biomedical applications, still represents a rather unexplored field. The aim of the present work is to investigate the interrelation between extracellular matrix (ECM) stiffness and the release of small EVs from cancer cells. Here, we focus on the interrelation between the ECM and small extracellular vesicles (sEVs), specifically investigating the unexplored aspect of the influence of ECM stiffness on the release of sEVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!