Asymmetric temporal properties in the receptive field of retinal transient amacrine cells.

J Gen Physiol

Department of Production, Information, and Systems Engineering, Tokyo Metropolitan Institute of Technology, 6-6, Asahigaoka, Hino, Tokyo 191-0065, Japan.

Published: October 2003

The speed of signal conduction is a factor determining the temporal properties of individual neurons and neuronal networks. We observed very different conduction velocities within the receptive field of fast-type On-Off transient amacrine cells in carp retina cells, which are tightly coupled to each other via gap junctions. The fastest speeds were found in the dorsal area of the receptive fields, on average five times faster than those detected within the ventral area. The asymmetry was similar in the On- and Off-part of the responses, thus being independent of the pathway, pointing to the existence of a functional mechanism within the recorded cells themselves. Nonetheless, the spatial decay of the graded-voltage photoresponse within the receptive field was found to be symmetrical, with the amplitude center of the receptive field being displaced to the faster side from the minimum-latency location. A sample of the orientation of varicosity-laden polyaxons in neurobiotin-injected cells supported the model, revealing that approximately 75% of these processes were directed dorsally from the origin cells. Based on these results, we modeled the velocity asymmetry and the displacement of amplitude center by adding a contribution of an asymmetric polyaxonal inhibition to the network. Due to the asymmetry in the conduction velocity, the time delay of a light response is proposed to depend on the origin of the photostimulus movement, a potentially important mechanism underlying direction selectivity within the inner retina.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233775PMC
http://dx.doi.org/10.1085/jgp.200308828DOI Listing

Publication Analysis

Top Keywords

receptive field
16
temporal properties
8
transient amacrine
8
amacrine cells
8
amplitude center
8
cells
6
receptive
5
asymmetric temporal
4
properties receptive
4
field
4

Similar Publications

To enhance high-frequency perceptual information and texture details in remote sensing images and address the challenges of super-resolution reconstruction algorithms during training, particularly the issue of missing details, this paper proposes an improved remote sensing image super-resolution reconstruction model. The generator network of the model employs multi-scale convolutional kernels to extract image features and utilizes a multi-head self-attention mechanism to dynamically fuse these features, significantly improving the ability to capture both fine details and global information in remote sensing images. Additionally, the model introduces a multi-stage Hybrid Transformer structure, which processes features at different resolutions progressively, from low resolution to high resolution, substantially enhancing reconstruction quality and detail recovery.

View Article and Find Full Text PDF

Motivation: The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple Instance Learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically focus on modeling the relationships between instances while neglecting the variability across the channel dimensions of instances, which prevents the model from fully capturing critical information in the channel dimension.

View Article and Find Full Text PDF

Superior colliculus controls the activity of the substantia nigra pars compacta and ventral tegmental area in an asymmetrical manner.

J Neurosci

January 2025

Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa street, 30-387 Kraków, Poland.

Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region processing information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats.

View Article and Find Full Text PDF

Background: Fast-acting Sub-perception Therapy (FAST) is a novel spinal cord stimulation (SCS) modality delivering paresthesia-free pain relief. Our study evaluated the longer-term, real-world impact of FAST on chronic pain.

Research Design And Methods: As part of a multicenter, real-world, consecutive case series, we retrospectively identified patients who used FAST-SCS and analyzed their data.

View Article and Find Full Text PDF

Luminance invariant encoding in mouse primary visual cortex.

Cell Rep

January 2025

Center for Perceptual Systems, The University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:

The visual system adapts to maintain sensitivity and selectivity over a large range of luminance intensities. One way that the retina maintains sensitivity across night and day is by switching between rod and cone photoreceptors, which alters the receptive fields and interneuronal correlations of retinal ganglion cells (RGCs). While these adaptations allow the retina to transmit visual information to the brain across environmental conditions, the code used for that transmission varies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!