Productive cis folding by the chaperonin GroEL is triggered by the binding of ATP but not ADP, along with cochaperonin GroES, to the same ring as non-native polypeptide, ejecting polypeptide into an encapsulated hydrophilic chamber. We examined the specific contribution of the gamma-phosphate of ATP to this activation process using complexes of ADP and aluminium or beryllium fluoride. These ATP analogues supported productive cis folding of the substrate protein, rhodanese, even when added to already-formed, folding-inactive cis ADP ternary complexes, essentially introducing the gamma-phosphate of ATP in an independent step. Aluminium fluoride was observed to stabilize the association of GroES with GroEL, with a substantial release of free energy (-46 kcal/mol). To understand the basis of such activation and stabilization, a crystal structure of GroEL-GroES-ADP.AlF3 was determined at 2.8 A. A trigonal AlF3 metal complex was observed in the gamma-phosphate position of the nucleotide pocket of the cis ring. Surprisingly, when this structure was compared with that of the previously determined GroEL-GroES-ADP complex, no other differences were observed. We discuss the likely basis of the ability of gamma-phosphate binding to convert preformed GroEL-GroES-ADP-polypeptide complexes into the folding-active state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC204461PMC
http://dx.doi.org/10.1093/emboj/cdg477DOI Listing

Publication Analysis

Top Keywords

gamma-phosphate atp
12
productive cis
8
cis folding
8
atp
5
role gamma-phosphate
4
atp triggering
4
triggering protein
4
protein folding
4
folding groel-groes
4
groel-groes function
4

Similar Publications

Advances in Protein Kinase Regulation of Stress Responses in Fruits and Vegetables.

Int J Mol Sci

January 2025

Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.

Fruits and vegetables (F&Vs) are essential in daily life and industrial production. These perishable produces are vulnerable to various biotic and abiotic stresses during their growth, postharvest storage, and handling. As the fruit detaches from the plant, these stresses become more intense.

View Article and Find Full Text PDF

The pathogenic G361A variant of CRAF, associated with increased intrinsic kinase activity in Noonan syndrome (NS), remains poorly understood in terms of its molecular and structural impact on kinase activity. To elucidate the mechanistic implications of the glycine to alanine substitution at residue 361 in CRAF, we employed molecular dynamics simulations. Our findings reveal that this mutation predominantly affects the ATP binding pocket and critical intermolecular interactions within the active cleft that favors the phosphate transfer reaction.

View Article and Find Full Text PDF

The phosphorylation reaction, catalyzed by the enzyme protein kinase A (PKA), plays one of the key roles in the work of the glutamatergic system, primarily involved in memory functioning. The analysis of the dynamic behavior of the enzyme-substrate complex allows one to learn the mechanism of the enzymatic reaction. According to the results of classical molecular dynamics calculations followed by hierarchical clustering, the most preferred proton acceptor during the phosphorylation reaction catalyzed by PKA is the carboxyl group of the amino acid residue Asp166; however, the γ-phosphate group of ATP can also act as an acceptor.

View Article and Find Full Text PDF

Unlabelled: 2C is a highly conserved picornaviral non-structural protein with ATPase activity and plays a multifunctional role in the viral life cycle as a promising target for anti-picornavirus drug development. While the structure-function of enteroviral 2Cs have been well studied, cardioviral 2Cs remain largely uncharacterized. Here, an endogenous ATP molecule was identified in the crystal structure of 2C from encephalomyocarditis virus (EMCV, Cardiovirus A).

View Article and Find Full Text PDF

Allosteric inhibitors of mitogen-activated protein kinase 1 (MEK1) reveal distinct interactions with MEK1 activation loop residues. The structural analyses will determine whether, and how, distinct inhibitors suppress the phosphorylation of MEK1 and may guide future therapeutic development. In this study, we explored the suppression mechanism of the phosphorylation process in the presence of MEK allosteric inhibitors, such as selumetinib, trametinib, cobimetinib, and CH5126766, by employing molecular dynamics simulations accompanied by principal component analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!