Eph kinases and their ephrin ligands are widely expressed in epithelial cells in vitro and in vivo. Our results show that activation of endogenous EphA kinases in Madin-Darby canine kidney (MDCK) cells negatively regulates hepatocyte growth factor/scatter factor (HGF)-induced branching morphogenesis in collagen gel. Cotreatment with HGF and ephrin-A1 reduced sprouting of cell protrusions, an early step in branching morphogenesis. Moreover, addition of ephrin-A1 after HGF stimulation resulted in collapse and retraction of preexisting cell protrusions. In a newly developed assay that simulates the localized interactions between Ephs and ephrins in vivo, immobilized ephrin-A1 suppressed HGF-induced MDCK cell scattering. Ephrin-A1 inhibited basal ERK1/2 mitogen-activated protein kinase activity; however, the ephrin-A1 effect on cell protrusion was independent of the mitogen-activated protein kinase pathway. Ephrin-A1 suppressed HGF-induced activation of Rac1 and p21-activated kinase, whereas RhoA activation was retained, leading to the preservation of stress fibers. Moreover, dominant-negative RhoA or inhibitor of Rho-associated kinase (Y27632) substantially negated the inhibitory effects of ephrin-A1. These data suggest that interfering with c-Met signaling to Rho GTPases represents a major mechanism by which EphA kinase activation inhibits HGF-induced MDCK branching morphogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173949PMC
http://dx.doi.org/10.1083/jcb.200304018DOI Listing

Publication Analysis

Top Keywords

branching morphogenesis
16
epha kinase
8
kinase activation
8
cell protrusions
8
ephrin-a1 suppressed
8
suppressed hgf-induced
8
hgf-induced mdck
8
mitogen-activated protein
8
protein kinase
8
ephrin-a1
7

Similar Publications

SMAD2/3 signaling determines the colony architecture in a hydrozoan, Dynamena pumila.

Differentiation

January 2025

Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Vavilova st. 26, Moscow, 119334, Russia. Electronic address:

Most hydrozoan cnidarians form complex colonies that vary in size, shape, and branching patterns. However, little is known about the molecular genetic mechanisms responsible for the diversity of the hydrozoan body plans. The Nodal signaling pathway has previously been shown to be essential for setting up a new body axis in a budding Hydra.

View Article and Find Full Text PDF

Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.

View Article and Find Full Text PDF

Breast Morphogenesis: From Normal Development to Cancer.

Adv Exp Med Biol

January 2025

Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.

The human breast gland is composed of branching epithelial ducts that culminate in milk-producing units known as terminal duct lobular units (TDLUs). The epithelial compartment comprises an inner layer of luminal epithelial cells (LEP) and an outer layer of contractile myoepithelial cells (MEP). Both LEP and MEP arise from a common stem cell population.

View Article and Find Full Text PDF

Embryonic Mammary Gland Morphogenesis.

Adv Exp Med Biol

January 2025

Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.

Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma.

View Article and Find Full Text PDF

In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!