Utility of PET in Breast Cancer.

Clin Positron Imaging

Departments of Nuclear Medicine, Technische Universität München, Munich, Germany

Published: October 1999

Breast cancer represents the most frequent malignant disease in women and the second leading cause of cancer death in western countries. Current available treatment includes surgery, radiation therapy, chemotherapy, and hormonal therapy. The disease is often curable when detected in early stages. Mammography is the most important screening modality; however, limitations of available procedures for the diagnosis and accurate staging of breast cancer has increased the application of metabolic imaging by positron emission tomography (PET). PET using the radiolabeled glucose analogue, F-18 fluorodeoxyglucose (FDG), enables visualization of increased glucose metabolism of malignant tissue. PET has been used successfully in an increasing number of oncological applications. It is an excellent clinical method to detect breast cancer over 1 cm in diameter and to accurately identify the extent of axillary lymph node metastases in patients with locally advanced disease. Recent reports have shown the high accuracy of FDG-PET imaging for staging of breast cancer patient by using whole-body PET imaging. The metabolic signal of tumor tissue allows for monitoring the effect of chemotherapy. FDG-PET can differentiate between responder and nonresponder early in the course of therapy. By identifying nonresponding patients, PET can help to avoid ineffective therapy and therefore, reduce toxic side effects in these patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1095-0397(99)00032-1DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
staging breast
8
cancer
6
breast
5
pet
5
utility pet
4
pet breast
4
cancer breast
4
cancer represents
4
represents frequent
4

Similar Publications

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Introduction: Management of pain associated with breast cancer surgeries is crucial in reducing incidence of postmastectomy pain syndrome. The pain distribution involves the anterior chest wall, axillary area and ipsilateral upper limb.

Objective: This study was designed to investigate the effect of bilevel erector spinae plane block (ESPB) with high thoracic block vs the conventional unilevel ESPB vs opioids in patients with cancer undergoing modified radical mastectomy regarding pain control and reducing pain in axilla.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women. In response to the need to hospital stays and minimize waiting time for surgery, particularly during the COVID-19 pandemic, the National Cancer Institute developed the One Day Surgery with Breast cancer Home Recovery program (ODS BHR NCI). The aim of study is to assess the success rate of breast cancer surgeries conducted through this program and to evaluate the incidence of complications.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!