MEFV is a gene expressed specifically in myeloid cells and whose mutations underlie an autosomal recessive auto-inflammatory disease, called familial Mediterranean fever (FMF), characterized by recurrent episodes of serosal inflammation. This gene, which encodes a protein with unclear physiological functions, has been shown to be up-regulated by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha). However, the mechanism of this regulation is unknown, and the MEFV promoter is still to be characterized. Here, we show that 243 bp of the 5'-flanking region of the human MEFV gene are sufficient to direct high level expression of MEFV in TNFalpha-treated cells. The TNFalpha-induced expression of MEFV is dependent on both NFkappaB p65 and C/EBPbeta that bind to evolutionarily conserved sites located, in the human promoter, at positions -163 and -55, respectively. As shown by a series of transcription and gel shift assays performed with wild-type and mutated promoter sequences, these two transcription factors act differently on the TNFalpha-dependent transcription of MEFV: C/EBPbeta is the key regulatory factor required to confer cell responsiveness to TNFalpha, whereas NFkappaB p65 increases this response by means of a synergistic interaction with C/EBPbeta that is dependent on the integrity of the identified -55 C/EBP binding site. Given the phenotype of patients with FMF, this C/EBP-NFkappaB interaction may represent a key step in the control of an inflammatory response that is abnormally high in this disease. These data, which shed novel light on the pathophysiology of FMF, represent an unusual example of cross-talk between C/EBP and NFkappaB pathways in TNFalpha signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M305166200DOI Listing

Publication Analysis

Top Keywords

tumor necrosis
8
necrosis factor
8
mediterranean fever
8
mefv promoter
8
synergistic interaction
8
mefv gene
8
expression mefv
8
nfkappab p65
8
mefv
7
factor alpha-dependent
4

Similar Publications

Targeting molecular pathways to control immune checkpoint inhibitor toxicities.

Trends Immunol

December 2024

Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Core Center Heidelberg, 69120 Heidelberg, Germany. Electronic address:

Immune checkpoint inhibitors (ICIs) have transformed cancer treatment but are frequently associated with immune-related adverse events (irAEs). This article offers a novel synthesis of findings from both preclinical and clinical studies, focusing on the molecular mechanisms driving irAEs across diverse organ systems. It examines key immune cells, such as T cell subsets and myeloid cells, which are instrumental in irAE pathogenesis, alongside an in-depth analysis of cytokine signaling [interleukin (IL)-6, IL-17, IL-4), interferon γ (IFN-γ), IL-1β, tumor necrosis factor α (TNF-α)], integrin-mediated interactions [integrin subunits αITGA)4 and ITGB7], and microbiome-related factors that contribute to irAE pathology.

View Article and Find Full Text PDF

Thymidine phosphorylase participates in platelet activation and promotes inflammation in rheumatoid arthritis.

Toxicol Appl Pharmacol

December 2024

Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:

The elevated risk of cardiovascular disease (CVD) associated with inflammatory rheumatic diseases has long been recognized. Patients with established rheumatoid arthritis (RA) have a higher mortality rate compared to the general population due to abnormal platelet activation. Thymidine phosphorylase (TYMP) plays a crucial role in platelet activation and thrombosis, following bridging the link between RA and CVD.

View Article and Find Full Text PDF

p62 Binding to Protein Kinase C Regulates HIV-1 gp120 V3 Loop Induced Microglial Inflammation.

Inflammation

December 2024

Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China.

The main pathogenic mechanism of HIV-associated neurocognitive disorders (HAND) is neuronal apoptosis induced by inflammatory mediators, in which microglial inflammation plays a crucial role. However, the exact pathogenic mechanism remains unclear. Previous studies have shown that the HIV-1 gp120 V3 loop can trigger inflammation in CHME-5 microglia.

View Article and Find Full Text PDF

Total Synthesis and Anti-Inflammatory Activity of Tectoridin and Related Isoflavone Glucosides.

J Nat Prod

December 2024

Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, China.

The first total syntheses of four isoflavone glucosides, tectoridin (), tectoridin A (), tectorigenin 7--β-d-glucopyranosyl-12--β-d-glucopyranoside (), and isotectroigenin 7--β-d-glucopyranoside (), have been accomplished. Key steps in our synthetic approach include a regioselective halogenation reaction, followed by methanolysis to introduce the -OCH group into isoflavone frameworks and a PTC-promoted stereoselective glycosidation to establish glycosidic bonds. The synthesized isoflavone glucosides (-) and their corresponding aglycones ( and ) were evaluated for anti-inflammatory activity against nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 β (IL-1β) in lipopolysaccharide (LPS)-induced RAW264.

View Article and Find Full Text PDF

Aims: The hepatic perivascular epithelioid cell tumour (PEComa), including angiomyolipoma, exhibits diverse morphology and clinical behaviour; however, its prognostic features remain undefined. This study aimed to investigate its histological features and prognostic factors.

Methods And Results: In total, 132 patients were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!