Signal-induced ubiquitination of I kappaB Kinase-beta.

J Biol Chem

Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0295, USA.

Published: December 2003

Initiation of the genetic programs for inflammation and immunity involves nuclear mobilization of transcription factor NF-kappaB. This signal-dependent process is controlled in part by the beta-catalytic subunit of IkappaB kinase (IKKbeta), which marks IkappaBalpha and other cytoplasmic inhibitors of NF-kappaB for proteolytic destruction. The catalytic activity of IKKbeta is stimulated by pathologic and physiologic inducers of NF-kappaB, such as the Tax oncoprotein and proinflammatory cytokines. We now report evidence that these NF-kappaB inducers target IKKbeta for conjugation to ubiquitin (Ub) in mammalian cells. The apparent molecular size of modified IKKbeta is compatible with monoubiquitination rather than attachment of a multimeric Ub chain. The modification is contingent upon signal-induced phosphorylation of the activation T loop in IKKbeta at Ser-177/Ser-181. The formation of IKKbeta-Ub conjugates is disrupted in cells expressing YopJ, a Ub-like protein protease that interferes with the NF-kappaB signaling pathway. These findings indicate an important mechanistic link between phosphorylation, ubiquitination, and the biologic action of IKKbeta.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M310686200DOI Listing

Publication Analysis

Top Keywords

ikkbeta
6
nf-kappab
5
signal-induced ubiquitination
4
ubiquitination kappab
4
kappab kinase-beta
4
kinase-beta initiation
4
initiation genetic
4
genetic programs
4
programs inflammation
4
inflammation immunity
4

Similar Publications

We investigated the protective effect of the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) on cardiomyocyte injury induced by HCN1 channel overexpression, and explored the underlying mechanisms. An HCN1 overexpression vector was constructed and transfected into H9C2 cells, followed by PDTC treatment. The experiments comprised the following groups: control, control + PDTC, overexpression negative control, HCN1 overexpression (HCN1-OE), and combined HCN1-OE + PDTC groups.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IDD) is the main pathological factor resulting in low back pain (LBP), the leading cause of disability globally. Inflammatory response and extracellular matrix (ECM) degradation are critical pathological features in the development of IDD. Gastrodin (GAS), a phenol compound isolated from Gastrodia elata Blume, plays an anti-inflammatory role in experimental models of multiple human diseases.

View Article and Find Full Text PDF

Mutations disrupting the kinase domain of IKKα lead to immunodeficiency and immune dysregulation in humans.

J Exp Med

February 2025

Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France.

IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features.

View Article and Find Full Text PDF

The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.

View Article and Find Full Text PDF

DOC2b enrichment mitigates proinflammatory cytokine-induced CXCL10 expression by attenuating IKKβ and STAT-1 signaling in human islets.

Metabolism

January 2025

Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA. Electronic address:

Introduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!