The molecular structures of trans-1,2-dichloro-1,2-disilylethene and 1-bromo-1-silylethene have been determined by gas-phase electron diffraction (GED) and ab initio molecular orbital calculations (MP2/6-311G). Both compounds were found to have highly asymmetric coordination around the carbon atoms with [ab initio (r(e))/GED (r(a))] C=C-Cl [117.0/117.0(2) degrees] and C=C-Si [126.2/128.1(1) degrees] in the C(2)(h) structure of trans-1,2-dichloro-1,2-disilylethene and C=C-Br [119.2/120.7(4) degrees] and C=C-Si [125.0/125.0(4) degrees] in the C(s) structure of 1-bromo-1-silylethene. Other important structural parameters for trans-1,2-dichloro-1,2-disilylethene are C=C [135.2/134.5(3) pm], C-Si [189.4/187.9(2) pm], and C-Cl [175.1/174.9(1) pm], and C=C [134.2/133.4(2) pm], C-Si [187.8/187.2(3) pm], and C-Br [191.3/191.0(3) pm] for 1-bromo-1-silylethene. Further ab initio calculations were carried out on CH(2)CRX and trans-(CRX)(2) (R = SiH(3), CH(3), or H; X = H, F, Cl, or Br) to gauge the effects of electron-withdrawing and electron-donating groups on the structures. They reveal some even more distorted structures. The asymmetric appearance of these molecules can largely be accounted for by valence shell electron pair repulsion theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic034596d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!