This paper reports experimental observations of wind speed and infrasonic noise reduction inside a wind barrier. The barrier is compared with "rosette" spatial filters and with a reference site that uses no noise reduction system. The barrier is investigated for use at International Monitoring System (IMS) infrasound array sites where spatially extensive noise-reducing systems cannot be used because of a shortage of suitable land. Wind speed inside a 2-m-high 50%-porous hexagonal barrier coated with a fine wire mesh is reduced from ambient levels by 90%. If the infrasound wind-noise level reductions are all plotted versus the reduced frequency given by f*L/v, where L is the characteristic size of the array or barrier, f is the frequency, and v is the wind speed, the reductions at different wind speeds are observed to collapse into a single curve for each wind-noise reduction method. The reductions are minimal below a reduced frequency of 0.3 to 1, depending on the device, then spatial averaging over the turbulence structure leads to increased reduction. Above the reduced corner frequency, the barrier reduces infrasonic noise by up to 20 to 25 dB. Below the corner frequency the barrier displays a small reduction of about 4 dB. The rosettes display no reduction below the corner frequency. One other advantage of the wind barrier over rosette spatial filters is that the signal recorded inside the barrier enters the microbarometer from free air and is not integrated, possibly out of phase, after propagation through a system of narrow pipes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.1598198 | DOI Listing |
Sensors (Basel)
January 2025
Satellite Application Division, Korea Aerospace Research Institute (KARI), Daejeon 34133, Republic of Korea.
For change detection in synthetic aperture radar (SAR) imagery, amplitude change detection (ACD) and coherent change detection (CCD) are widely employed. However, time-series SAR data often contain noise and variability introduced by system and environmental factors, requiring mitigation. Additionally, the stability of SAR signals is preserved when calibration accounts for temporal and environmental variations.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China.
This paper aims to address the challenge of precise robotic grasping of molecular sieve drying bags during automated packaging by proposing a six-dimensional (6D) pose estimation method based on an red green blue-depth (RGB-D) camera. The method consists of three components: point cloud pre-segmentation, target extraction, and pose estimation. A minimum bounding box-based pre-segmentation method was designed to minimize the impact of packaging wrinkles and skirt curling.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, People's Republic of China.
Atrial fibrillation (AF) is a common arrhythmia disease with a higher incidence rate. The diagnosis of AF is time-consuming. Although many ECG classification models have been proposed to assist in AF detection, they are prone to misclassifying indistinguishable noise signals, and the context information of long-term signals is also ignored, which impacts the performance of AF detection.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China.
In inertial confinement fusion experiments, hot spot mix caused by hydrodynamic instabilities is a critical performance limitation. Currently, multi-channel Ross filter pair imaging is used to quantitatively diagnose the mix mass of cryogenic hot spots driven by 100 kJ energy, but this method brings significant uncertainty. To measure the level of mix more accurately, we have developed a two-temperature model to modify the fitted bremsstrahlung spectra based on the characteristics of cryogenic implosion hot spots.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Innovative Laser Processing Group, Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Ibaraki, Japan.
Microfluidic sensors incorporated onto chips allow sensor miniaturization and high-throughput analyses for point-of-care or non-clinical analytical tools. Three-dimensional (3D) printing based on femtosecond laser direct writing (fs-LDW) is useful for creating 3D microstructures with high spatial resolution because the structures are printed in 3D space along a designated laser light path. High-performance biochips can be fabricated using the 'ship-in-a-bottle' integration technique, in which functional microcomponents or biomimetic structures are embedded inside closed microchannels using fs-LDW.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!