Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata.

Oecologia

Laboratory of Forest Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, 606-8502, Kyoto Japan.

Published: October 2003

This study investigated spatio-temporal variation in the leaf area consumed by insect herbivores within a canopy of Fagus crenata, with reference to the light conditions of leaf clusters. There was no clear relationship between photosynthetic photon flux density (PPFD) and consumed leaf area (CLA) in May, immediately after leaf flush, but CLA decreased with an increase in PPFD after June. Leaf mass per area, carbon concentration, C/N ratio, concentration of total phenolics, and condensed tannin concentration were higher in leaves under high light intensity than those of leaves under low light. On the other hand, the nitrogen concentration of leaves decreased as light availability increased. Consequently, within-tree variation in light availability affects the consumption of leaves by insect herbivores through temporal changes in leaf characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-003-1337-xDOI Listing

Publication Analysis

Top Keywords

canopy fagus
8
fagus crenata
8
leaf area
8
insect herbivores
8
light availability
8
leaf
7
light
5
temporal spatial
4
spatial variations
4
variations leaf
4

Similar Publications

Chlorophyll and topographic patterns demonstrate stress conditions drive the brightness of autumn leaf colour.

Plant Biol (Stuttg)

December 2024

Echigo-Matsunoyama Museum of Natural Science 'Kyororo', Tokamachi, Niigata, Japan.

Autumn leaf colour brightness is an important cultural ecosystem service. As its spatial patterns and ecophysiological mechanisms remain unclear, we analysed relationships among autumn leaf colour brightness, late summer chlorophyll content, and topographic position in both canopy-based micro-scale analysis and site-based macro-scale analysis. Multispectral drone observations were made in three Fagus crenata forests at elevations of 300, 600, and 900 m in Niigata Prefecture, Japan.

View Article and Find Full Text PDF

Canopy openness rather than tree species determines atmospheric deposition into forests.

Sci Total Environ

December 2024

Forest Ecology and Forest Management Group, Wageningen University and Research Centre, PO Box 47, Wageningen 6700AA, the Netherlands.

Atmospheric nutrient deposition plays a crucial role in supplying nutrients to forests on poor soils, making it a key factor in maintaining nutrient stocks and forest productivity. We compared total atmospheric deposition in production forests of European beech (Fagus sylvatica), Douglas fir (Pseudotsuga menziesii), and Scots pine (Pinus sylvestris) by measuring bulk deposition and throughfall while accounting for canopy exchange. We assessed the differences in total deposition resulting from forest management practices such as high-thinning, shelterwood and clearcutting, on forest structure for both macronutrients and micronutrients in areas exposed to high nutrient deposition.

View Article and Find Full Text PDF

Deciphering the vectors: Unveiling the local dispersal of Litylenchus crenatae ssp. mccannii in the American beech (Fagus grandifolia) forest ecosystem.

PLoS One

November 2024

Plant Pathology and Environmental Microbiology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America.

Beech leaf disease (BLD), caused by the Litylenchus crenatae ssp. mccannii (Lcm) nematode, is an emerging threat to beech trees. This disease is characterized by distinct leaf symptoms, including leaf interveinal banding and thickened leaf texture, which leads to eventual tree mortality.

View Article and Find Full Text PDF

Although woodpeckers are known to forage in decaying trees, their contribution to internal wood decay is not well known. In this sense, non-destructive techniques for structural wood degradation provide an opportunity to quantitatively assess the role of woodpeckers in tree decay. We used sonic tomography to test that the trunks of living trees pecked by Magellanic woodpeckers show pronounced decay, which accelerates under environmental conditions favorable to wood-decaying fungi.

View Article and Find Full Text PDF

Atmospheric nitrogen (N) deposition has notably increased since the industrial revolution, doubling N inputs to terrestrial ecosystems. This could mitigate N limitations in forests, potentially enhancing productivity and carbon sequestration. However, excessive N can lead to forest N saturation, causing issues like soil acidification, nutrient imbalances, biodiversity loss, increased tree mortality and a potential net greenhouse gas emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!