Interaction of glucose oxidase with alkyl-substituted Sepharose 4B.

Appl Biochem Biotechnol

Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran.

Published: September 2003

Glucose oxidase (GOD) is often used in immobilized forms for determination of glucose. To examine the possibility of its adsorption by hydrophobic interactions, palmityl-substituted Sepharose 4B (Sepharoselipid) was employed as an adsorptive matrix. Various conditions were used in tests to improve the limited immobilization of the enzyme observed under normal (native) conditions, including use of high concentrations of denaturing agents. Of the denaturants used, only the cationic detergent dodecyl trimethyl ammonium bromide was effective in denaturing the protein and exposing its hydrophobic sites for interaction with alkyl residues on the support. This, followed by the process of renaturation, provided catalytically active immobilized preparations. The apoenzyme, prepared by treatment of the holoenzyme with acidified (NH4)2SO4 or thermal denaturation, was totally immobilized on the support. Furthermore, it was shown that either flavin adenine dinucleotide (FAD) or the alkyl residues, not both, may interact with the nucleotide site at any given time. Results are discussed in terms of high rigidity of GOD molecule and limited exposure of hydrophobic sites in its native structure. The observations are in accord with suggestions in the literature that the FAD pocket is a very narrow channel of hydrophobic properties, adapted to accept its natural coenzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1385/abab:110:3:165DOI Listing

Publication Analysis

Top Keywords

glucose oxidase
8
hydrophobic sites
8
alkyl residues
8
interaction glucose
4
oxidase alkyl-substituted
4
alkyl-substituted sepharose
4
sepharose glucose
4
oxidase god
4
god immobilized
4
immobilized forms
4

Similar Publications

[Artificial light at night effects glucose metabolism in the developing jawbone by inhibiting melatonin secretion].

Zhonghua Kou Qiang Yi Xue Za Zhi

January 2025

Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology & School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology & Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.

To investigate the effects of artificial light at night on the growth of mandibles in mice and its regulatory mechanisms. A mouse model of artificial light at night (night light pollution group) and normal lighting (normal light group) was established by controlling light exposure time, with 4 mice in each group. Micro-CT was employed to analyze the differences in bone quantities of the mandibles between the two groups.

View Article and Find Full Text PDF

Enzymes are attractive as catalysts due to their specificity and biocompatibility; however, their use in industrial and biomedical applications is limited by stability. Here, we present a facile approach for enzyme immobilization within "all-enzyme" hydrogels by forming photochemical covalent cross-links between the enzyme glucose oxidase. We demonstrate that the mechanical properties of the enzyme hydrogel can be tuned with enzyme concentration and the data suggests that the dimeric nature of glucose oxidase results in unusual gel formation behavior which suggests a degree of forced induced dimer dissociation and unfolding.

View Article and Find Full Text PDF

BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection.

J Mater Chem B

January 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat.

View Article and Find Full Text PDF

VO microcubes as an alternative to peroxidase/TMB for colorimetric detection of HO: Development of glucose sensing method.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175 Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj 66177-15175 Iran. Electronic address:

The study focuses on the synthesis of VO microcubes for the non-enzymatic colorimetric determination of HO.Vanadium oxide nanostructures are known for their redox activity and layered structures, making VO a valuable material for sensing applications. The characterization of the prepared sample was done using XPS, XRD, Raman spectroscopy, and SEM techniques.

View Article and Find Full Text PDF

Stepwise Lighting Up Gold(I)-Thiolate Complexes from AIE Nanoaggregates to AIEE Nanoprobes with a ZIF-8 Shell for Glucose Biosensing.

Anal Chem

January 2025

School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!