An immuno-affinity method for the purification of mannose 6-phosphate receptor proteins.

J Biochem Biophys Methods

Protein Biochemistry Laboratory, Department of Biochemistry, University of Hyderabad, Hyderabad 500 046, India.

Published: September 2003

In a recent study, we have developed an ELISA method to quantify the mannose 6-phosphate receptor (MPR) proteins [J. Biochem. Biophys. Methods 52 (2002) 111]. In the present study, we have used the goat MPR 300 antibody and peptide specific antibodies to human MPR 46 to develop simple and efficient immuno-affinity matrices, which can be used to purify the MPR proteins from goat liver in a single step. The identity of the immuno-affinity purified receptors is confirmed by their molecular masses as well as by their immunoreactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-022x(03)00148-9DOI Listing

Publication Analysis

Top Keywords

mannose 6-phosphate
8
6-phosphate receptor
8
mpr proteins
8
immuno-affinity method
4
method purification
4
purification mannose
4
receptor proteins
4
proteins study
4
study developed
4
developed elisa
4

Similar Publications

Retromer mediates retrograde transport of protein cargos from endosomes to the trans-Golgi network (TGN). γ-secretase is a protease that cleaves the transmembrane domain of its target proteins. Although retromer can form a stable complex with γ-secretase, the functional consequences of this interaction are not known.

View Article and Find Full Text PDF

Engineering of a lysosomal-targeted GAA enzyme.

Protein Eng Des Sel

January 2025

Pfizer Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, United States.

Pompe disease is a tissue glycogen disorder caused by genetic insufficiency of the GAA enzyme. GAA enzyme replacement therapies for Pompe disease have been limited by poor lysosomal trafficking of the recombinant GAA molecule through the native mannose-6-phosphate-mediated pathway. Here, we describe the successful rational engineering of a chimeric GAA enzyme that utilizes the binding affinity of a modified IGF-II moiety to its native receptor to bypass the mannose-6-phosphate-mediated lysosomal trafficking pathway, conferring a significant increase in cellular uptake of the GAA enzyme.

View Article and Find Full Text PDF

GRASP55 Regulates Sorting and Maturation of the Lysosomal Enzyme β-Hexosaminidase A.

Mol Biol Cell

January 2025

Department of Molecular, Cellular and Developmental Biology, the University of Michigan, Ann Arbor, MI 48109, USA.

The Golgi apparatus plays a crucial role in the delivery of lysosomal enzymes. Golgi Reassembly Stacking Proteins, GRASP55 and GRASP65, are vital for maintaining Golgi structure and function. GRASP55 depletion results in the missorting and secretion of the lysosomal enzyme cathepsin D (Xiang , 2013), though the mechanisms remain unclear.

View Article and Find Full Text PDF

Asparagine-linked glycosylation (N-glycosylation) is a common co- and post-translational modification that refers to the addition of complex carbohydrates, called N-linked glycans (N-glycans), to asparagine residues within defined sequons of polypeptide acceptors. Some N-glycans can be modified by the addition of phosphate moieties to their monosaccharide residues, thus forming phospho-N-glycans (PNGs). The most prominent such carbohydrate modification is mannose-6-phosphate (M6P) which plays a well-established role in trafficking of acid hydrolases to lysosomes.

View Article and Find Full Text PDF

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in hundreds of millions of infections and millions of deaths globally. Although vaccination campaigns are mitigating the pandemic, emerging viral variants continue to pose challenges. The spike (S) protein of SARS-CoV-2 plays a critical role in viral entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, making both proteins essential targets for therapeutic and vaccine development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!