Glatiramer acetate (GA) is efficacious in reducing demyelinating-associated exacerbations in patients with relapsing-remitting multiple sclerosis (RRMS) and in several experimental autoimmune encephalomyelitis (EAE) models. Here we report that GA reduced the clinical and pathological signs of mice in chronic EAE induced by myelin oligodendrocyte glycoprotein (MOG). GA-treated mice demonstrated only mild focal inflammation, and less demyelination, compared with controls. Moreover, we also found minimal axonal disruption, as assessed by silver staining, antibodies against amyloid precursor protein (APP) and non-phosphorylated neurofilaments (SMI-32), in the GA-treated group. In conclusion, our study demonstrated for the first time that axonal damage is reduced following GA treatment in C57/bl mice with chronic MOG-induced EAE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0168-0102(03)00217-7 | DOI Listing |
Vision Res
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.
View Article and Find Full Text PDFCurr Gene Ther
January 2025
Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.
Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.
View Article and Find Full Text PDFInt J Legal Med
January 2025
Department of Forensic Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland.
In forensic neuropathology, the β-amyloid precursor protein (β-APP) immunostain is used to diagnose axonal injury (AI). The two most common aetiologies are traumatic (TAI) and ischaemic (vascular; VAI). We aimed to identify background characteristics and neuropathology findings that are suggestive of TAI, VAI, or no AI in neuropathologically examined medico-legal autopsy cases.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Acupuncture, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China.
Background: Optic atrophy (OA) is primarily caused by damage to the retinal pathway system, including widespread degeneration of retinal ganglion cells and axons, leading to visual impairment and blindness. Despite its clinical significance and diverse etiological factors, there is currently a lack of comprehensive bibliometric analyses exploring research trends and hotspots within this field.
Method: This study retrieved relevant literature on OA published between 2003 and 2023 from the Web of Science Core Collection database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!