The aim of this study was to investigate the capacity of the 2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester (NCX 4016), a nitric oxide (NO)-releaser derivative of aspirin, to decrease blood pressure in spontaneously hypertensive rats (SHR) and to counteract the adrenergic vasoconstriction in perfused tail artery of these animals. Oral treatment for 10 consecutive days with NCX 4016 (100 micromol/kg) in SHR and their genetic controls Wistar Kyoto (WKY) rats resulted in a reduction of blood pressure in SHR but not in WKY rats. In SHR, the NCX 4016 treatment increased the serum nitrite/nitrate and diminished the serum thromboxane B2, whereas aspirin did not change blood pressure but abolished the serum thromboxane B2. Perfused tail arteries excised from vehicle-treated SHR exhibited a significant impairment of endothelium-dependent vasorelaxant function. These vessels, prepared from SHR or WKY rats treated orally with NCX 4016 (10, 30 and 100 micromol/kg for 7 consecutive days), revealed a dose-dependent decrease in vasoconstriction in response to transmural nerve stimulation and norepinephrine, whereas aspirin was ineffective. Furthermore, in tail arteries of both SHR and WKY rats treated orally with NCX 4016 (100 micromol/kg for 7 consecutive days), the cGMP increased significantly. In conclusion, NCX 4016, by releasing NO and increasing cGMP in vascular tissue, reduces sympathetic-mediated vasoconstriction in resistance vessels and lowers blood pressure in SHR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2003.08.004DOI Listing

Publication Analysis

Top Keywords

ncx 4016
24
blood pressure
16
wky rats
16
perfused tail
12
consecutive days
12
4016 100
12
100 micromol/kg
12
shr wky
12
vasoconstriction perfused
8
tail artery
8

Similar Publications

COX inhibitors and bone: A safer impact on osteoblasts by NO-releasing NSAIDs.

Life Sci

September 2018

Department of Surgery and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy.

Unlabelled: Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for the treatment of pain and inflammation. Although it is well known that NSAIDs can suppress bone growth, remodelling and repair, they are largely used post-operatively and post-traumatically to achieve analgesia and reduce inflammation in bone tissue.

Aims: The impact of two NO-releasing, non-selective NSAIDs, NCX-4016 and HCT-3012 (NO-derivatives of Aspirin and Naproxen, respectively) on osteoblasts were evaluated and compared to the non-selective, parent chemicals and to the COX-2-selective inhibitor Celecoxib.

View Article and Find Full Text PDF

Myeloid derived suppressor cells (MDSC) produce nitric oxide (NO) and inhibit dendritic cell (DC) immune responses in cancer. DCs present cancer cell antigens to CD4 T cells through Jak-STAT signal transduction. In this study, NO donors (SNAP and DETA-NONOate) inhibited DC antigen presentation.

View Article and Find Full Text PDF

Candida albicans biofilms play a key role in denture stomatitis, one of the most common oral pathologies in elderly people. Because biofilms are highly resistant to antifungals, new pharmacological strategies are needed. Aspirin and nitric oxide-donor molecules have both shown antibiofilm effects on C.

View Article and Find Full Text PDF

Background/aim: Nitric oxide-donating nonsteroidal antiinflammatory drugs (NO-NSAIDs) are a promising new class of antiinflammatory agents, which are obtained by adding NO-donating moieties to the existing conventional NSAID molecules. The aim of this study was to investigate the effects of aspirin, flurbiprofen, and NO-donating acetylsalicylic acid (NCX 4016) on cecal ligation and puncture (CLP) and endotoxin-induced septic shock (LPS) models in mice.

Materials And Methods: Overall survival and spleen and liver weights were monitored in LPS and CLP models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!