Carbonic anhydrase (CA) catalyzes the interconversion of CO(2) and HCO(3)(-). Intracellular (extravascular) and intravascular (extracellular) CA has been identified and localized in the lungs of reptiles and mammals. Less information is known, however, on the presence of intravascular CA in the lungs of amphibians and avians. In the present study, perfusion studies were used to compare the catalytic activity of pulmonary intravascular CA in reptiles and mammals. In addition, SDS-resistant CA activity was examined in microsomal fractions prepared from gill/lung tissue from representative animals in each vertebrate class. Finally, the CNO(-) sensitivity of the microsomal CA activity was compared. No SDS-resistant CA activity was found in gill microsomal fractions of several fish species. In contrast, the data suggest that SDS-resistant, intravascular pulmonary CA activity is present in air-breathing vertebrates with vastly differing lung morphologies and that the kinetics of inhibition is remarkably comparable between the vertebrate classes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1095-6433(03)00177-6 | DOI Listing |
Adv Biotechnol (Singap)
April 2024
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
In response to the changing intertidal environment, intertidal macroalgae have evolved complicated Ci utilization mechanisms. However, our knowledge regarding the CO concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of CCM, plays essential roles in many physiological reactions in various organisms.
View Article and Find Full Text PDFAim: Human carbonic anhydrases (hCAs) are involved in many physiological processes including respiration, pH control, ion transport, bone resorption, and gastric fluid secretion. Recently, CA IX and CA XII have been studied for their role in cancer diseases, motivating the design of inhibitors of these isoforms.
Material And Method: Here, we used the tail approach to design a new series of monoaryl () and bicyclic () benzensulfonamide derivatives CA IX and CA XII inhibitors.
Front Immunol
January 2025
First Department of Pediatrics, Weifang People's Hospital Affiliated to Shandong Second Medical University, Weifang, China.
Autoimmune cerebellar ataxia (ACA) is a cerebellar syndrome induced by autoimmune reactions and its onset is induced by malignant tumors, prodromic infection, and gluten allergy. Its clinical symptoms include gait disorder, limb ataxia, dysarthria, and dysphagia. According to , the diagnosis of ACA is based on the following points: 1.
View Article and Find Full Text PDFBioact Mater
May 2025
Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511400, China.
Tumor microenvironment governs various therapeutic tolerability of cancer such as ferroptosis and immunotherapy through rewiring tumor metabolic reprogramming like Warburg metabolism. Highly expressed carbonic anhydrases (CA) in tumor that maintaining the delicate metabolic homeostasis is thus the most potential target to be modulated to resolve the therapeutic tolerability. Hence, in this article, a self-healable and pH-responsive spermidine/ferrous ion hydrogel loaded with CA inhibitor (acetazolamide, ACZ) and glucose oxidase (ACZ/GOx@SPM-HA Gel) was fabricated through the Schiff-base reaction between spermidine-dextran and oxidized hyaluronic acid, along with ferrous coordination.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Bee and Natural Products R&D and P&D Application and Research Center, Bingöl University, Bingöl, Turkey.
Background: Phlomis capitata is an endemic species of flowering aromatic and medicinal plant in the family Lamiaceae, native to regions of the Mediterranean and nearby areas. Understanding the chemical compounds present in P. capitata can reveal potential medicinal properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!