A model for transport of glucose in adipose tissue to a microdialysis probe.

Diabetes Technol Ther

Department of Biomonitoring and Sensoring, University Center of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

Published: March 2004

A model is presented, describing diffusion of solutes (as glucose) through adipose tissue. The model is based on the well-known extraction equation for diffusion across capillary walls or across the membrane of microdialysis probes, but adapted for use in adipose tissue. Arguments are presented for a simple scheme in which the mean capillary concentration of a solute (i.e., glucose) is substituted for the interstitial fluid solute concentration in the extraction equation, as the driving force for diffusion of glucose from capillary to cell or from capillary to a microdialysis probe. The model is discussed by evaluating the results of previous studies by our group and others on the equilibrium concentration of glucose in a microdialysis probe, as well as the effect of insertion on recovery of glucose by the probe and the time it takes for glucose in adipose tissue to diffuse to the probe. The results of these studies are in good agreement with the predictions derived from the model: The equilibrium concentration of glucose in the microdialysis probe is equal to the capillary glucose concentration. Insertion effects can be explained by a lower glucose concentration around the probe because of inflammation (12-18 h) and by a slow increase in the number of functioning capillaries around the probe due to wound healing (4-6 days). Transport time of glucose from capillaries to a microdialysis probe is not more than a few seconds. Reported delay times in the literature are probably caused by an uneven distribution of blood glucose after a glucose challenge.

Download full-text PDF

Source
http://dx.doi.org/10.1089/152091503322250604DOI Listing

Publication Analysis

Top Keywords

microdialysis probe
20
adipose tissue
16
glucose
13
glucose adipose
12
probe
9
probe model
8
extraction equation
8
equilibrium concentration
8
concentration glucose
8
glucose microdialysis
8

Similar Publications

Introduction: This study evaluated the relationship between total plasma and free kidney concentrations of amphotericin B (AmB) in healthy and -infected Wistar rats using microdialysis and has the potential to significantly impact future research in this field and promote the development of antifungal drugs. The findings of this study, which show that plasma levels are a good predictor for AmB kidney concentrations and can be used to optimize its dosing regimen, underscore the importance of this research.

Methods: Microdialysis probe recovery rates were determined by dialysis and retrodialysis , as well as by retrodialysis .

View Article and Find Full Text PDF

Establishing In-vivo brain microdialysis for comparing concentrations of a variety of cortical neurotransmitters in the awake rhesus macaque between different cognitive states.

J Neurosci Methods

March 2025

Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, Goettingen 37077 Germany.

Background: Neuronal activity is modulated by behavior and cognitive processes. The combination of several neurotransmitter systems, acting directly or indirectly on specific populations of neurons, underlie such modulations. Most studies with non-human primates (NHPs) fail to capture this complexity, partly due to the lack of adequate methods for reliably and simultaneously measuring a broad spectrum of neurotransmitters while the animal engages in behavioral tasks.

View Article and Find Full Text PDF

Background: Intracranial multimodal monitoring (iMMM) is increasingly used in neurocritical care, but a lack of standardization hinders its evidence-based development. Here, we devised core outcome sets (COS) and reporting guidelines to harmonize iMMM practices and research.

Methods: An open, decentralized, three-round Delphi consensus study involved experts between December 2023 and June 2024.

View Article and Find Full Text PDF

Determination of inorganic cations in dry milk samples deposited on a microdialysis probe by capillary electrophoresis.

Food Chem

February 2025

Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czechia. Electronic address:

A tubular microdialysis probe is made from polysulfone hollow fibre for human haemodialysis, which has an inner diameter of 200 μm and a thickness of 20 μm. Milk is deposited to the outer surface of the hollow fibre and allowed to dry to form a dry sample. The tubular probe is then connected to the syringe pump and microdialysis of the dry sample into 0.

View Article and Find Full Text PDF

Pharmacokinetic (PK) elucidation of polymeric micelles delivering anticancer drugs is crucial for accurate antitumor PK-pharmacodynamic (PK-PD) simulations. Particularly, establishing a methodology to quantify the tumor inflow and outflow of anticancer drugs encapsulated in polymeric micelles is an essential challenge. General tumor biodistribution experiments are disadvantageous in that inflow quantification is easy, but outflow quantification is challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!