Retinal function and morphology in two zebrafish models of oculo-renal syndromes.

Eur J Neurosci

Swiss Federal Institute of Technology (ETH) Zurich, Department of Biology, and the Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

Published: September 2003

We characterized visual system defects in two recessive zebrafish mutants oval and elipsa. These mutants share the syndromic phenotype of outer retinal dystrophy in conjunction with cystic renal disorder. We tested the function of the larval visual system in a behavioural assay, eliciting optokinetic eye movements by high-contrast motion stimulation while recording eye movements in parallel. Visual stimulation did not elicit eye movements in mutant larvae, while spontaneous eye movements could be observed. The retina proved to be unresponsive to light using electroretinography, indicative of a defect in the outer retina. Histological analysis of mutant retinas revealed progressive degeneration of photoreceptors, initiated in central retinal locations and spreading to more peripheral regions with increasing age. The inner retina remains unaffected by the mutation. Photoreceptors display cell type-specific immunoreactivity prior to apoptotic cell death, arguing for a dystrophic defect. Genomic mapping employing simple sequence-length polymorphisms located both mutations on different regions of zebrafish linkage group 9. These mutants may serve as accessible animal models of human outer retinal dystrophies, including oculo-renal diseases, and show the general usefulness of a behavioural genetic approach to study visual system development in the model vertebrate zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2003.02863.xDOI Listing

Publication Analysis

Top Keywords

eye movements
16
visual system
12
outer retinal
8
retinal
4
retinal function
4
function morphology
4
zebrafish
4
morphology zebrafish
4
zebrafish models
4
models oculo-renal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!