Presence of D-alanine in proteins of normal and Alzheimer human brain.

Brain Res

Department of Biochemistry, Stazione Zoologica A. Dohrn Villa Comunale, Naples, Italy.

Published: October 1992

This report constitutes the first demonstration of the presence of D-alanine in the proteins of the human nervous system. Proteins of the frontal lobe white and gray matter of human brains, both normal and Alzheimer subjects, contain D-alanine at concentrations between 0.50 and 1.28 mumol/g of wet tissue, 50-70-times lower than the concentration of L-alanine. Both white and gray matter of Alzheimer brains contain D-alanine 1.4-times higher than the respective regions of normal brains. The gray matter proteins of Alzheimer brains show a highly significant 8% decrease in total alanine content, when compared with normal brain gray matter proteins. Since Alzheimer's disease is exhibited by deterioration of the gray matter, the occurrence of elevated D-alanine levels in the gray matter of Alzheimer brains is a significant discovery and raises the question whether this enantiomer causes the degeneration of the gray matter proteins in Alzheimer's disease, or whether it is an effect of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(92)91656-yDOI Listing

Publication Analysis

Top Keywords

gray matter
28
alzheimer brains
12
matter proteins
12
presence d-alanine
8
d-alanine proteins
8
normal alzheimer
8
white gray
8
matter alzheimer
8
proteins alzheimer's
8
alzheimer's disease
8

Similar Publications

Testosterone, an essential sex steroid hormone, influences brain health by impacting neurophysiology and neuropathology throughout the lifespan in both genders. However, human research in this area is limited, particularly in women. This study examines the associations between testosterone levels, gray matter volume (GMV) and cerebral blood flow (CBF) in midlife individuals at risk for Alzheimer's disease (AD), according to sex and menopausal status.

View Article and Find Full Text PDF

F-Florbetaben (FBB) uptake in the supratentorial cortex is indicative of amyloid positivity. Due to PET's low spatial resolution, image noise, and spill-over of signal from adjacent white-matter into gray-matter, there are inconsistencies in ratings among trained readers. A set of 264 F-Florbetaben (amyloid) PET/MRI exams were reconstructed using conventional ordered subset expectation maximization (OSEM) method and MR-guided block sequential regularized expectation maximization (MRgBSREM) method.

View Article and Find Full Text PDF

Artificial intelligence (AI) and machine learning (ML) are driving innovation in biosciences and are already affecting key elements of medical scholarship and clinical care. Many schools of medicine are capitalizing on the promise of these new technologies by establishing academic units to catalyze and grow research and innovation in AI/ML. At Stanford University, we have developed a successful model for an AI/ML research center with support from academic leaders, clinical departments, extramural grants, and industry partners.

View Article and Find Full Text PDF

Aim: Superiority illusion (SI), a cognitive bias where individuals perceive themselves as better than others, may serve as a psychological mechanism that contributes to well-being and resilience in older adults. However, the specific neural basis of SI in elderly populations remains underexplored. This study aims to identify brain regions partially associated with SI, exploring its potential role in adaptive psychological processes.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!