ATM's leucine-rich domain and adjacent sequences are essential for ATM to regulate the DNA damage response.

Oncogene

Department of Radiation Oncology, JF513, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.

Published: September 2003

The ATM protein kinase regulates the DNA damage response by phosphorylating proteins involved in cell cycle checkpoints and DNA repair. We report here on the function of the predicted leucine zipper (LZ) motif, and sequences adjacent to this, in regulating ATM activity. The predicted LZ sequence was deleted from ATM, generating ATMDeltaLZ, and expressed in an ATM-negative AT cell line. ATM increased cell survival following exposure to ionizing radiation, whereas expression of ATMDeltaLZ failed to increase cell survival. ATMDeltaLZ retained in vitro kinase activity, but was unable to phosphorylate p53 in vivo. Leucine zippers mediate homo- and heterodimerization of proteins. However, the predicted LZ of ATM did not mediate the formation of ATM dimers. We examined if the predicted LZ of ATM was a dominant-negative inhibitor of ATM function in SW480 cells. Expression of amino acids 769-1436 of ATM, including the predicted LZ, sensitized SW480 cells to ionizing radiation, but did not inhibit ATM's kinase activity or its ability to phosphorylate Brca1. Further, this dominant-negative activity was not dependent on the predicted LZ domain. The central region of the ATM protein therefore contains multiple sequences which regulate cell survival following DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1206760DOI Listing

Publication Analysis

Top Keywords

dna damage
12
cell survival
12
atm
11
damage response
8
atm protein
8
ionizing radiation
8
kinase activity
8
predicted atm
8
sw480 cells
8
predicted
6

Similar Publications

In vitro fertilization (IVF) is a widely used assisted reproductive technology to achieve a successful pregnancy. However, the acquisition of oxidative stress in embryo in vitro culture impairs its competence. Here, we demonstrated that a nuclear coding gene, methyltransferase-like protein 7A (METTL7A), improves the developmental potential of bovine embryos.

View Article and Find Full Text PDF

Increased cardiac macrophages in -deficient hearts: revealing a potential role for macrophage in responding to embryonic myocardial abnormalities.

Front Genet

January 2025

Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD).

View Article and Find Full Text PDF

This study evaluates the effects of hydroxytyrosol (HT), a component of olive oil, on mammographic breast density reduction. We explored effects of HT on Wnt -catenin and other pathways involved in cancer stem cell renewal, DNA repair, cell proliferation, and differentiation. Twenty-five milligrams per day oral dose of HT was given for 12 months in pre- and postmenopausal women at increased risk of breast cancer.

View Article and Find Full Text PDF

is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of . However, the exact manner in which promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored.

View Article and Find Full Text PDF

Chloroplast State Transitions Modulate Nuclear Genome Stability via Cytokinin Signaling in Arabidopsis.

Mol Plant

January 2025

Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People's Republic of China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, People's Republic of China. Electronic address:

Activities of the chloroplasts and nucleus are coordinated by retrograde signaling, which has crucial roles in plant development and environmental adaptation. However, the connection between chloroplast status and nuclear genome stability is not well understood. Chloroplast state transitions allow the plant to balance the absorption capacity of the photosystems in an environment in which the light quality was changing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!