Molecular diagnosis makes a substantial contribution to precise diagnosis, subclassification, prognosis, and selection of therapy. Mutations in the PDS (SLC26A4) gene are known to be responsible for both Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct, and the molecular confirmation of the PDS gene has become important in the diagnosis of these conditions. In the present study, PDS mutation analysis confirmed that PDS mutations were present and significantly responsible in 90% of Pendred families, and in 78.1% of families with nonsyndromic hearing loss associated with enlarged vestibular aqueduct. Furthermore, variable phenotypic expression by the same combination of mutations indicated that these two conditions are part of a continuous category of disease. Interestingly, the PDS mutation spectrum in Japanese, including the seven novel mutations revealed by this study, is very different from that found in Caucasians. Of the novel mutations detected, 53% were the H723R mutation, suggesting a possible founder effect. Ethnic background is therefore presumably important and should be noted when genetic testing is being performed. The PDS gene mutation spectrum in Japanese may be representative of those in Eastern Asian populations and its elucidation is expected to facilitate the molecular diagnosis of a variety of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.ejhg.5201073DOI Listing

Publication Analysis

Top Keywords

nonsyndromic hearing
12
hearing loss
12
loss associated
12
associated enlarged
12
enlarged vestibular
12
vestibular aqueduct
12
pds slc26a4
8
pendred syndrome
8
syndrome nonsyndromic
8
molecular diagnosis
8

Similar Publications

A Preliminary Study of Hearing Loss in Children With Craniosynostosis.

Cleft Palate Craniofac J

January 2025

Department of Plastic and Reconstructive Surgery, Nationwide Children's Hospital, Columbus, OH, USA.

To describe the frequency and types of hearing loss in children with syndromic and non-syndromic craniosynostosis. Retrospective cohort study. Large tertiary pediatric hospital.

View Article and Find Full Text PDF

DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.

View Article and Find Full Text PDF

Background: Children born with cleft palate ± lip (CP ± L) are at risk of speech sound disorder (SSD). Up to 40% continue to have SSD at age 5-6 years. These difficulties are typically described as articulatory in nature and often include cleft speech characteristics (CSC) hypothesized to result from structural differences.

View Article and Find Full Text PDF

Oligogenic effect is associated with the clinical heterogeneity of autosomal dominant deafness-15.

Sci Rep

January 2025

Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.

Autosomal dominant deafness-15 which is caused by mutation in the POU4F3 gene, has been reported with a wide degree of clinical heterogeneity, even between intrafamilial members. However, the reason is still elusive. In this study, A four-generation Chinese family with 11 patients manifesting late-onset progressive non-syndromic hearing loss was recruited.

View Article and Find Full Text PDF

Identification of novel CDH23 heterozygous variants causing autosomal recessive nonsyndromic hearing loss.

Genes Genomics

January 2025

Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, China.

Background: Hearing loss adversely impacts language development, acquisition, and the social and cognitive maturation of affected children. The hearing loss etiology mainly includes genetic factors and environmental factors, of which the former account for about 50-60%.

Objective: This study aimed to investigate the genetic basis of autosomal recessive non-syndromic hearing loss (NSHL) by identifying and characterizing novel variants in the CDH23 gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!