Regional distribution of Na,K-ATPase activity in porcine lens epithelium.

Invest Ophthalmol Vis Sci

Department of Ophthalmology, University of Louisville, School of Medicine, Louisville, Kentucky 40202, USA.

Published: October 2003

Purpose: It has been established that Na,K-ATPase activity is higher in lens epithelium than fibers. However, others have suggested the Na,K-ATPase enzyme may be inactive or absent in the central 10% of the epithelium. Studies were conducted to measure and compare Na,K-ATPase specific activity and to examine Na,K-ATPase protein expression in the anterior and equatorial regions of porcine lens epithelium.

Methods: Na,K-ATPase activity was determined by measuring the ouabain-sensitive rate of adenosine triphosphate (ATP) hydrolysis. Western blot analysis was used to detect Na,K-ATPase catalytic subunit (alpha) and glycoprotein subunit (beta) protein as well as beta-actin which was used as a loading control.

Results: Na,K-ATPase specific activity was more than two times higher in the equatorial epithelium than the anterior 50% of the epithelium. However, the abundance of Na,K-ATPase alpha1 isoform protein was similar in the two regions. Neither the alpha2 nor alpha3 Na,K-ATPase isoform could be detected in the anterior or equatorial epithelium, but Na,K-ATPase beta1 protein was detected in both regions. In contrast to the observed regional difference in Na,K-ATPase activity, the activity of a different P-type ATPase, plasma membrane Ca-ATPase (PMCA), was not significantly different in the anterior and central epithelium. Western blot analysis indicated the presence of two PMCA isoforms, PMCA2, and PMCA4.

Conclusions: Na,K-ATPase activity is significantly higher at the equatorial region of the epithelium compared with the anterior, even though the level of Na,K-ATPase protein is similar in the two regions. It is possible that nonuniform distribution of functional Na,K-ATPase activity contributes to the driving force for circulating solute movement through the lens fiber mass.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.03-0287DOI Listing

Publication Analysis

Top Keywords

nak-atpase activity
24
nak-atpase
15
activity
9
porcine lens
8
epithelium
8
lens epithelium
8
activity higher
8
nak-atpase specific
8
specific activity
8
nak-atpase protein
8

Similar Publications

Article Synopsis
  • Cancer cells need more energy (ATP) to grow and survive, which can change how they take in and balance sodium ions in their bodies.
  • The researchers used special methods to measure sodium levels and how fast cancer cells convert sugar into energy, comparing cancer cells to normal cells to see the differences.
  • They found that when they blocked a specific pump that controls sodium balance (Na/K-ATPase), the cancer cells had more sodium and produced less energy, showing that sodium levels affect their energy production.
View Article and Find Full Text PDF

High dietary lipid level promotes low salinity adaptation in the marine euryhaline crab ().

Anim Nutr

March 2023

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

The physiological processes involved in adaptation to osmotic pressure in euryhaline crustaceans are highly energy demanding, but the effects of dietary lipids (fat) on low salinity adaptations have not been well evaluated. In the present study, a total of 120 mud crabs (, BW = 17.87 ± 1.

View Article and Find Full Text PDF
Article Synopsis
  • SLC4A11 mutations are linked to various corneal dystrophies and associated conditions like Harboyan syndrome.
  • Research on mice missing the Slc4a11 gene shows they develop issues similar to congenital hereditary endothelial dystrophy, emphasizing the protein's role in corneal health.
  • Five specific SLC4A11 mutations were analyzed in a cell line, revealing that, while there were no significant differences in protein levels at the cell surface, all mutations led to reduced acidification and H ion currents compared to the wild type, indicating altered transport properties rather than protein trafficking issues.
View Article and Find Full Text PDF

Alzheimer's Toxic Amyloid Beta Oligomers: Unwelcome Visitors to the Na/K ATPase alpha3 Docking Station.

Yale J Biol Med

March 2017

Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University; Department of Neurology, Feinberg School of Medicine, Northwestern University.

Toxic amyloid beta oligomers (AβOs) are known to accumulate in Alzheimer's disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AβOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death.

View Article and Find Full Text PDF

Our laboratory has recently demonstrated that low concentrations of ouabain increase blood pressure in rats associated with stimulation of NaK ATPase activity and activation of the Src signaling cascade in NHE1-dependent manner. Proteomic analysis of human kidney proximal tubule cells (HKC11) suggested that the Angiotensin II type 1 receptor (AT1R) as an ouabain-associating protein. We hypothesize that ouabain-induced stimulation of NaK ATPase activity is mediated through AT1R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!