Objective: To develop a reproducible method of isolating an intact viable human limbal epithelial sheet.

Methods: Human pigmented limbus was incubated at 4 degrees C for 18 hours in supplemental hormonal epithelial medium (SHEM) containing 50 mg/mL dispase II and 100 mM sorbitol. A loose limbal epithelial sheet was separated by a spatula. The remaining stroma was digested and subcultured. The viability of isolated cells was assessed. Isolated epithelial sheets and remaining stroma were subjected to immunostaining. Sheets 1.5 mm in length were cultured in SHEM on plastic until confluence, and cell extracts were subjected to Western blot analysis.

Results: Intact limbal epithelial sheets were consistently isolated. Pigmented palisades of Vogt revealed large superficial squamous cells and small basal cuboidal cells. No epithelial cells grew from the remaining stroma. Mean viability was 80.7% +/- 9.1%. The basal epithelium was negative to keratin 3 and connexin 43, but was scatter positive for p63. The epithelial sheet showed negative staining for laminin 5 and collagen VII, but interrupted linear basal staining for collagen IV. The remaining stroma showed negative staining for laminin 5, positive linear staining for collagen IV in the basement membrane, and diffuse staining for collagen VII in the superior stroma subjacent to the basement membrane. Western blot analysis revealed that cells originating from the limbal sheets expressed keratin 3 and p63.

Conclusions: An intact limbal epithelial sheet can be consistently and reproducibly isolated and contains stem cell characteristics in the basal epithelium by degrading laminin 5 and part of collagen IV, and disassembling collagen VII.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.03-0089DOI Listing

Publication Analysis

Top Keywords

limbal epithelial
20
epithelial sheet
16
remaining stroma
16
collagen vii
12
staining collagen
12
epithelial
9
viable human
8
human limbal
8
epithelial sheets
8
western blot
8

Similar Publications

A woman in her 50s underwent simple limbal epithelial transplantation (SLET) in the left eye for chemical injury with total limbal stem cell deficiency. A seroma, a hitherto unreported complication of the procedure was noted on the 10th postoperative day. It was associated with an accumulation of inflammatory cells and exudates in the inferior part of the amniotic membrane resembling a hypopyon.

View Article and Find Full Text PDF

Aim: This study aimed to evaluate the impact of pterygium excision combined with autologous limbal stem cell transplantation on microvascular density, tear film stability, and corneal wound healing in the management of pterygium.

Methods: A retrospective analysis was conducted on 317 patients with pterygium who underwent treatment between January 2021 and January 2024. Patients were divided into a control group (pterygium excision alone, n = 161) and a study group (pterygium excision combined with autologous limbal stem cell transplantation, n = 156) based on the surgical approach.

View Article and Find Full Text PDF

Y-27632 and dual media culture approach promote the construction and transplantation of rabbit limbal epithelial cell sheets via cell spheroid culture and auto-bioprinting.

Acta Biomater

January 2025

Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China. Electronic address:

The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis.

View Article and Find Full Text PDF

3D printed biomimetic bilayer limbal implants for regeneration of the corneal structure in limbal stem cell deficiency.

Acta Biomater

January 2025

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:

Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.

View Article and Find Full Text PDF

Transdifferentiation of rat keratinocyte progenitors to corneal epithelial cells by limbal niche via the STAT3/PI3K/AKT signaling pathway.

Stem Cell Res Ther

January 2025

Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.

Purpose: To develop a method for enriching keratinocyte progenitor cells (KPCs) and establish a limbal niche (LN)-mediated transdifferentiation protocol of KPCs into corneal epithelial cells.

Methods: Limbal niche cells (LNCs) were isolated from limbal tissues through enzymatic digestion and characterized. Conditioned medium from LNCs cultures was collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!