A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of ethanol on reductions in norepinephrine electrochemical signal in the rostral ventrolateral medulla and hypotension elicited by I1-receptor activation in spontaneously hypertensive rats. | LitMetric

The mechanism of the antagonistic hemodynamic interaction between ethanol and centrally acting sympatholytics is not known. In this study, we tested the hypothesis that the imidazoline (I1)-receptor modulation of norepinephrine (NE) release within the rostral ventrolateral medulla (RVLM) plays a pivotal role in this clinically relevant hemodynamic interaction. METHOD In anesthetized spontaneously hypertensive rats, the effects of centrally acting sympatholytics on RVLM NE electrochemical signal were investigated by in vivo electrochemistry along with cardiovascular responses in the absence and presence of ethanol. In vivo microdialysis in conscious spontaneously hypertensive rats was used to confirm the electrochemical findings. RESULTS Clonidine (30 microg/kg, intravenously) or rilmenidine (400, 600, or 800 microg/kg) significantly reduced RVLM NE electrochemical signal (index of neuronal activity) and mean arterial pressure; rilmenidine effects were dose-related, and ethanol (1 g/kg) counteracted these responses. Ethanol (1 g/kg) pretreatment increased both RVLM NE electrochemical signal and blood pressure but did not influence the reductions in both variables elicited by subsequently administered clonidine. The alpha2-adrenergic antagonist 2-methoxyidazoxan (30 microg/kg) counteracted rilmenidine (800 microg/kg)-evoked responses. In vivo microdialysis in conscious spontaneously hypertensive rats confirmed the electrochemical findings since clonidine- (30 microg/kg, intravenously) evoked reductions in RVLM NE and the associated hypotension were counteracted by ethanol (1 g/kg). CONCLUSIONS (1) Ethanol counteracts centrally mediated hypotension, at least in part, by increasing RVLM NE; (2) the interaction involves the I1 receptor modulation of RVLM neuronal activity; (3) the alpha2-adrenergic receptor contributes to the electrochemical and cardiovascular effects of high doses of rilmenidine, and (4) the RVLM is a neuroanatomical target for systemically administered ethanol.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ALC.0000086062.95225.0CDOI Listing

Publication Analysis

Top Keywords

electrochemical signal
16
spontaneously hypertensive
16
hypertensive rats
16
rvlm electrochemical
12
ethanol g/kg
12
ethanol
8
rostral ventrolateral
8
ventrolateral medulla
8
hemodynamic interaction
8
centrally acting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!