We have previously shown that myogenesis induction by Arg8-vasopressin (AVP) in L6 rat myoblasts involves a sustained stimulation of type 4 cAMP-phosphodiesterase. In this model, we observed that a transient cAMP generation occurs in the minutes following AVP addition. Evidence suggests that cAMP generation is due to the prostaglandins produced in response to AVP binding to V1a receptors and subsequent activation of phospholipase A2. The early cAMP increase was effective in activating cAMP-dependent protein kinase (PKA) and increasing phosphorylation of CREB transcription factor. Inhibition of PKA by compound H89 prior to AVP addition led to a significant reduction of expression of the differentiation marker creatine kinase, whereas H89 added 1-5 h after AVP had no significant effect. Furthermore, PKA inhibition 24 h after the beginning of AVP treatment potentiated differentiation. This shows that both an early activation and a later down-regulation of the cAMP pathway are required for AVP induction of myogenesis. Because phosphodiesterase PDE4D3 overexpressed in L6 cells lost its ability to potentiate AVP-induced differentiation when mutated and rendered insensitive to PKA phosphorylation and activation, we hypothesize that the early cAMP increase is required to trigger the down-regulation of cAMP pathway through stimulation of phosphodiesterase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M306941200 | DOI Listing |
Reprod Biol
January 2025
School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Contrary to the evidence supporting the role for insulin in stimulating uterine contraction, only a limited number of studies have highlighted the inhibitory effect of insulin on myometrial contractions in human and rodent. A hypothetical narrative review of the current literature was conducted, revealing the current literature and shows the potential inhibitory effects of insulin on myometrial contractility. These inhibitory mechanisms include activation of adenylyl cyclase signaling pathways, an increase in cAMP production, a decrease in Ca influx and cytosolic Ca, hyperpolarization of the cell membrane, and stimulation of NO synthesis.
View Article and Find Full Text PDFJ Microsc
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.
View Article and Find Full Text PDFNutrients
December 2024
Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
Chronic stress exposure has been widely recognized as a significant contributor to numerous central nervous system (CNS) disorders, leading to debilitating behavioral changes such as anxiety, depression, and cognitive impairments. The prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress disrupts the neuroendocrine balance and has detrimental effects on neuronal function and survival. () Gaertn.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.
Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.
View Article and Find Full Text PDFMolecules
January 2025
Department of Experimental Dermatology and Cosmetology, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.
Caffeine has recently attracted attention as a potential remedy for hair loss. In the present review, we look into the molecule's possible mechanisms of action and pharmacodynamics. At the molecular level, it appears that the physiological effects of caffeine are mainly due to the molecule's interaction with adenosine pathways which leads to an increase in cAMP level and the stimulation of metabolic activity in the hair follicle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!