Thioredoxin-dependent thiol peroxidase (Tpx) from Escherichia coli represents a group of antioxidant enzymes that are widely distributed in pathogenic bacterial species and which belong to the peroxiredoxin (Prx) family. Bacterial Tpxs are unique in that the location of the resolving cysteine (CR) is different from those of other Prxs. E. coli Tpx (EcTpx) shows substrate specificity toward alkyl hydroperoxides over H2O2 and is the most potent reductant of alkyl hydroperoxides surpassing AhpC and BCP, the other E. coli Prx members. Here, we present the crystal structure of EcTpx in the oxidized state determined at 2.2-A resolution. The structure revealed that Tpxs are the second type of atypical 2-Cys Prxs with an intramolecular disulfide bond formed between the peroxidatic (CP, Cys61) and resolving (Cys95) cysteine residues. The extraordinarily long N-terminal chain of EcTpx folds into a beta-hairpin making the overall structure very compact. Modeling suggests that, in atypical 2-Cys Prxs, the CR-loop as well as the CP-loop may alternately assume the fully folded or locally unfolded conformation depending on redox states, as does the CP-loop in typical 2-Cys Prxs. EcTpx exists as a dimer stabilized by hydrogen bonds. Its substrate binding site extends to the dimer interface. A modeled structure of the reduced EcTpx in complex with 15-hydroperoxyeicosatetraenoic acid suggests that the size and shape of the binding site are particularly suited for long fatty acid hydroperoxides consistent with its greater reactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M309015200 | DOI Listing |
Atherosclerosis
January 2025
Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; Imvastech Inc., 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea. Electronic address:
Backgroungd And Aims: Peroxiredoxin 5 (PRDX5), an atypical 2-Cys peroxiredoxin (PRDX), is known to regulate global oxidative stresses and inflammatory responses. Inflammation and oxidative stress are pivotal factors in the development of atherosclerosis, especially in the context of vascular endothelial dysfunction. However, effects of PRDX5 on atherosclerosis remain unclear.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, South Korea. Electronic address:
Peroxiredoxin 5 (Prdx5) is the last recognized member of Prdx family. It is a unique, atypical, 2-Cys antioxidant enzyme, protecting cells from death caused by reactive oxygen species (ROS). In this study, the Prdx5 ortholog of Amphiprion clarkii (AcPrdx5) was identified and characterized to explore its specific structural features and functional properties.
View Article and Find Full Text PDFCureus
August 2024
Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND.
Cells Dev
September 2023
Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Nuevo Leon, Mexico. Electronic address:
Peroxiredoxins (Prdxs) are thiol-dependent enzymes that scavenge peroxides. Previously, we found that Prdxs were hyperoxidized in a Parkinson's disease model induced by paraquat (PQ), which led to their inactivation, perpetuating reactive oxygen species (ROS) formation. Herein, we evaluated the redox state of the typical 2-Cys-Prx subgroup.
View Article and Find Full Text PDFBiochem J
January 2023
Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!